BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 20210845)

  • 1. Performance, properties and plasticity of identified oxytocin and vasopressin neurones in vitro.
    Armstrong WE; Wang L; Li C; Teruyama R
    J Neuroendocrinol; 2010 May; 22(5):330-42. PubMed ID: 20210845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological properties of identified oxytocin and vasopressin neurones.
    Armstrong WE; Foehring RC; Kirchner MK; Sladek CD
    J Neuroendocrinol; 2019 Mar; 31(3):e12666. PubMed ID: 30521104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient receptor potential channel m4 and m5 in magnocellular cells in rat supraoptic and paraventricular nuclei.
    Teruyama R; Sakuraba M; Kurotaki H; Armstrong WE
    J Neuroendocrinol; 2011 Dec; 23(12):1204-13. PubMed ID: 21848647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in spike train variability in rat vasopressin and oxytocin neurons and their relationship to synaptic activity.
    Li C; Tripathi PK; Armstrong WE
    J Physiol; 2007 May; 581(Pt 1):221-40. PubMed ID: 17332000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central blockade of oxytocin receptors during mid-late gestation reduces amplitude of slow afterhyperpolarization in supraoptic oxytocin neurons.
    Teruyama R; Lipschitz DL; Wang L; Ramoz GR; Crowley WR; Bealer SL; Armstrong WE
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1167-71. PubMed ID: 18812459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of calcium-dependent afterpotentials in oxytocin neurons of the rat supraoptic nucleus during lactation.
    Teruyama R; Armstrong WE
    J Physiol; 2005 Jul; 566(Pt 2):505-18. PubMed ID: 15878948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylinositol 4,5-bisphosphate (PIP
    Kirchner MK; Foehring RC; Wang L; Chandaka GK; Callaway JC; Armstrong WE
    J Physiol; 2017 Jul; 595(14):4927-4946. PubMed ID: 28383826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity in the interaction of high-voltage-activated Ca
    Kirchner MK; Foehring RC; Callaway J; Armstrong WE
    J Neurophysiol; 2018 Oct; 120(4):1728-1739. PubMed ID: 30020842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the properties of ionotropic glutamate synaptic currents in oxytocin and vasopressin neuroendocrine neurons.
    Stern JE; Galarreta M; Foehring RC; Hestrin S; Armstrong WE
    J Neurosci; 1999 May; 19(9):3367-75. PubMed ID: 10212296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus.
    Teruyama R; Armstrong WE
    J Neurophysiol; 2007 Nov; 98(5):2612-21. PubMed ID: 17715195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the active membrane properties of rat supraoptic neurones during pregnancy and lactation.
    Teruyama R; Armstrong WE
    J Neuroendocrinol; 2002 Dec; 14(12):933-44. PubMed ID: 12472874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tonic regulation of GABAergic synaptic activity on vasopressin neurones by cannabinoids.
    Wang L; Armstrong WE
    J Neuroendocrinol; 2012 Apr; 24(4):664-73. PubMed ID: 21988161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro.
    Armstrong WE; Smith BN; Tian M
    J Physiol; 1994 Feb; 475(1):115-28. PubMed ID: 8189384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term potentiation of GABAergic synaptic inputs to vasopressin and oxytocin neurones.
    Morton LA; Popescu IR; Haam J; Tasker JG
    J Physiol; 2014 Oct; 592(19):4221-33. PubMed ID: 25063825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic and state-dependent expression of the electrical and morphological properties of oxytocin and vasopressin neurones.
    Armstrong WE; Stern JE
    Prog Brain Res; 1998; 119():101-13. PubMed ID: 10074783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the electrical properties of supraoptic nucleus oxytocin and vasopressin neurons during lactation.
    Stern JE; Armstrong WE
    J Neurosci; 1996 Aug; 16(16):4861-71. PubMed ID: 8756418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro.
    Stern JE; Armstrong WE
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):701-8. PubMed ID: 8576859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological and electrophysiological classification of hypothalamic supraoptic neurons.
    Armstrong WE
    Prog Neurobiol; 1995; 47(4-5):291-339. PubMed ID: 8966209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiology of guinea-pig supraoptic neurones: role of a hyperpolarization-activated cation current in phasic firing.
    Erickson KR; Ronnekleiv OK; Kelly MJ
    J Physiol; 1993 Jan; 460():407-25. PubMed ID: 8487202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiology of spontaneous [Ca(2+)]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus.
    Kortus S; Srinivasan C; Forostyak O; Ueta Y; Sykova E; Chvatal A; Zapotocky M; Verkhratsky A; Dayanithi G
    Cell Calcium; 2016 Jun; 59(6):280-8. PubMed ID: 27072326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.