These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20210878)

  • 81. Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses.
    Jones SR; Pritchett DL; Sikora MA; Stufflebeam SM; Hämäläinen M; Moore CI
    J Neurophysiol; 2009 Dec; 102(6):3554-72. PubMed ID: 19812290
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Sensory incongruence leading to hand disownership modulates somatosensory cortical processing.
    Otsuru N; Hashizume A; Nakamura D; Endo Y; Inui K; Kakigi R; Yuge L
    Cortex; 2014 Sep; 58():1-8. PubMed ID: 24946301
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Early activation of the primary somatosensory cortex without conscious awareness of somatosensory stimuli in tumor patients.
    Preissl H; Flor H; Lutzenberger W; Duffner F; Freudenstein D; Grote E; Birbaumer N
    Neurosci Lett; 2001 Aug; 308(3):193-6. PubMed ID: 11479021
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Suppression of Somatosensory Evoked Cortical Responses by Noxious Stimuli.
    Takeuchi N; Kinukawa T; Sugiyama S; Inui K; Kanemoto K; Nishihara M
    Brain Topogr; 2019 Sep; 32(5):783-793. PubMed ID: 31218521
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Sensory stimulation triggers spindles during sleep stage 2.
    Sato Y; Fukuoka Y; Minamitani H; Honda K
    Sleep; 2007 Apr; 30(4):511-8. PubMed ID: 17520796
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Predicting stimulus-rate sensitivity of human somatosensory fMRI signals with MEG.
    Nangini C; Hlushchuk Y; Hari R
    Hum Brain Mapp; 2009 Jun; 30(6):1824-32. PubMed ID: 19378275
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Slow cortical potential shifts modulate the sensory threshold in human visual system.
    Devrim M; Demiralp T; Kurt A; Yücesir I
    Neurosci Lett; 1999 Jul; 270(1):17-20. PubMed ID: 10454135
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Investigating the effects of transcranial alternating current stimulation on primary somatosensory cortex.
    Manzo N; Guerra A; Giangrosso M; Belvisi D; Leodori G; Berardelli A; Conte A
    Sci Rep; 2020 Oct; 10(1):17129. PubMed ID: 33051523
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The interaction between felt touch and tactile consequences of observed actions: an action-based somatosensory congruency paradigm.
    Deschrijver E; Wiersema JR; Brass M
    Soc Cogn Affect Neurosci; 2016 Jul; 11(7):1162-72. PubMed ID: 26152577
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Beyond the N1: A review of late somatosensory evoked responses in human infants.
    Saby JN; Meltzoff AN; Marshall PJ
    Int J Psychophysiol; 2016 Dec; 110():146-152. PubMed ID: 27553531
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A spatiotemporal signature of cortical pain relief by tactile stimulation: An MEG study.
    Hayamizu M; Hagiwara K; Hironaga N; Ogata K; Hoka S; Tobimatsu S
    Neuroimage; 2016 Apr; 130():175-183. PubMed ID: 26854558
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effect of lingual vibrotactile stimulation on the averaged cortical evoked response.
    Blackmon RC; McCaffrey P; Fucci D
    Percept Mot Skills; 1983 Oct; 57(2):383-9. PubMed ID: 6634321
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Magnetoencephalographic study of event-related fields and cortical oscillatory changes during cutaneous warmth processing.
    An KM; Lim S; Lee HJ; Kwon H; Kim MY; Gohel B; Kim JE; Kim K
    Hum Brain Mapp; 2018 May; 39(5):1972-1981. PubMed ID: 29363226
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Bilateral cortical representation of tactile roughness.
    Genna C; Oddo C; Fanciullacci C; Chisari C; Micera S; Artoni F
    Brain Res; 2018 Nov; 1699():79-88. PubMed ID: 29908164
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Cortical activity reduction with stimulus repetition: a whole-head MEG analysis.
    Penney TB; Maess B; Busch N; Derrfuss J; Mecklinger A
    Brain Res Cogn Brain Res; 2003 Apr; 16(2):226-31. PubMed ID: 12668231
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Fast decrement with stimulus repetition in ERPs generated by neuronal systems involving somatosensory SI and SII cortices: electric and magnetic evoked response recordings in humans.
    Kekoni J; Tiihonen J; Hämäläinen H
    Int J Psychophysiol; 1992 May; 12(3):281-8. PubMed ID: 1639674
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Anticipatory cerebellar responses during somatosensory omission in man.
    Tesche CD; Karhu JJ
    Hum Brain Mapp; 2000 Mar; 9(3):119-42. PubMed ID: 10739364
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Interaction of finger representations in the cortex of individuals with autism: a functional window into cortical inhibition.
    Coskun MA; Loveland KA; Pearson DA; Papanicolaou AC; Sheth BR
    Autism Res; 2013 Dec; 6(6):542-9. PubMed ID: 23983203
    [TBL] [Abstract][Full Text] [Related]  

  • 99. On brain's magnetic responses to sensory stimuli.
    Hari R
    J Clin Neurophysiol; 1991 Apr; 8(2):157-69. PubMed ID: 2050816
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Gamma oscillations in human primary somatosensory cortex reflect pain perception.
    Gross J; Schnitzler A; Timmermann L; Ploner M
    PLoS Biol; 2007 May; 5(5):e133. PubMed ID: 17456008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.