BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20211247)

  • 1. Reactions of superoxide with the myoglobin tyrosyl radical.
    Das AB; Nagy P; Abbott HF; Winterbourn CC; Kettle AJ
    Free Radic Biol Med; 2010 Jun; 48(11):1540-7. PubMed ID: 20211247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides.
    Winterbourn CC; Parsons-Mair HN; Gebicki S; Gebicki JM; Davies MJ
    Biochem J; 2004 Jul; 381(Pt 1):241-8. PubMed ID: 15025556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunochemical detection of nitric oxide and nitrogen dioxide trapping of the tyrosyl radical and the resulting nitrotyrosine in sperm whale myoglobin.
    Nakai K; Mason RP
    Free Radic Biol Med; 2005 Oct; 39(8):1050-8. PubMed ID: 16198232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition.
    Das AB; Nauser T; Koppenol WH; Kettle AJ; Winterbourn CC; Nagy P
    Free Radic Biol Med; 2014 May; 70():86-95. PubMed ID: 24561577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the myoglobin tyrosyl radical by immuno-spin trapping and its dimerization.
    Detweiler CD; Lardinois OM; Deterding LJ; de Montellano PR; Tomer KB; Mason RP
    Free Radic Biol Med; 2005 Apr; 38(7):969-76. PubMed ID: 15749393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the free radicals formed in the metmyoglobin-hydrogen peroxide reaction.
    Gunther MR
    Free Radic Biol Med; 2004 Jun; 36(11):1345-54. PubMed ID: 15135170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of tyrosine radicals in hemoglobin and myoglobins treated with hydrogen peroxide.
    Svistunenko DA; Dunne J; Fryer M; Nicholls P; Reeder BJ; Wilson MT; Bigotti MG; Cutruzzolà F; Cooper CE
    Biophys J; 2002 Nov; 83(5):2845-55. PubMed ID: 12414716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radical-radical reactions of superoxide: a potential route to toxicity.
    Winterbourn CC; Kettle AJ
    Biochem Biophys Res Commun; 2003 Jun; 305(3):729-36. PubMed ID: 12763053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione.
    Pichorner H; Metodiewa D; Winterbourn CC
    Arch Biochem Biophys; 1995 Nov; 323(2):429-37. PubMed ID: 7487108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer between a tyrosyl radical and a cysteine residue in hemoproteins: spin trapping analysis.
    Bhattacharjee S; Deterding LJ; Jiang J; Bonini MG; Tomer KB; Ramirez DC; Mason RP
    J Am Chem Soc; 2007 Nov; 129(44):13493-501. PubMed ID: 17939657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra- and intermolecular transfers of protein radicals in the reactions of sperm whale myoglobin with hydrogen peroxide.
    Lardinois OM; Ortiz de Montellano PR
    J Biol Chem; 2003 Sep; 278(38):36214-26. PubMed ID: 12855712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct EPR observation of a tyrosyl radical in a functional oxidase model in myoglobin during both H2O2 and O2 reactions.
    Yu Y; Mukherjee A; Nilges MJ; Hosseinzadeh P; Miner KD; Lu Y
    J Am Chem Soc; 2014 Jan; 136(4):1174-1177. PubMed ID: 24383850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide trapping of the tyrosyl radical-chemistry and biochemistry.
    Gunther MR; Sturgeon BE; Mason RP
    Toxicology; 2002 Aug; 177(1):1-9. PubMed ID: 12126791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping.
    Wright PJ; English AM
    J Am Chem Soc; 2003 Jul; 125(28):8655-65. PubMed ID: 12848573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of peroxynitrite-induced nitration of tyrosine by glutathione in the presence of carbon dioxide through both radical repair and peroxynitrate formation.
    Kirsch M; Lehnig M; Korth HG; Sustmann R; de Groot H
    Chemistry; 2001 Aug; 7(15):3313-20. PubMed ID: 11531117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer.
    Nagy P; Kettle AJ; Winterbourn CC
    J Biol Chem; 2009 May; 284(22):14723-33. PubMed ID: 19297319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine.
    Möller MN; Hatch DM; Kim HY; Porter NA
    J Am Chem Soc; 2012 Oct; 134(40):16773-80. PubMed ID: 22989205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of tyrosyl radical reduction by selenocysteine.
    Steinmann D; Nauser T; Beld J; Tanner M; Günther D; Bounds PL; Koppenol WH
    Biochemistry; 2008 Sep; 47(36):9602-7. PubMed ID: 18702524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan-14 is the preferred site of DBNBS spin trapping in the self-peroxidation reaction of sperm whale metmyoglobin with a single equivalent of hydrogen peroxide.
    Gunther MR; Tschirret-Guth RA; Lardinois OM; Ortiz de Montellano PR
    Chem Res Toxicol; 2003 May; 16(5):652-60. PubMed ID: 12755595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of hydroperoxide-induced tyrosyl radicals and lipoxygenase activity in aspirin-treated human prostaglandin H synthase-2.
    Xiao G; Tsai AL; Palmer G; Boyar WC; Marshall PJ; Kulmacz RJ
    Biochemistry; 1997 Feb; 36(7):1836-45. PubMed ID: 9048568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.