These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20211250)

  • 1. Low extracellular zinc increases neuronal oxidant production through nadph oxidase and nitric oxide synthase activation.
    Aimo L; Cherr GN; Oteiza PI
    Free Radic Biol Med; 2010 Jun; 48(12):1577-87. PubMed ID: 20211250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldosterone increases kidney tubule cell oxidants through calcium-mediated activation of NADPH oxidase and nitric oxide synthase.
    Queisser N; Schupp N; Stopper H; Schinzel R; Oteiza PI
    Free Radic Biol Med; 2011 Dec; 51(11):1996-2006. PubMed ID: 21946068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of N-methyl-D-aspartate receptors on ouabain activation of nuclear factor-κB in the rat hippocampus.
    Kawamoto EM; Lima LS; Munhoz CD; Yshii LM; Kinoshita PF; Amara FG; Pestana RR; Orellana AM; Cipolla-Neto J; Britto LR; Avellar MC; Rossoni LV; Scavone C
    J Neurosci Res; 2012 Jan; 90(1):213-28. PubMed ID: 22006678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the N-methyl-D-aspartate receptor in neuronal cell death induced by cytotoxic T cell-derived secretory granules.
    Malipiero U; Heuss C; Schlapbach R; Tschopp J; Gerber U; Fontana A
    Eur J Immunol; 1999 Oct; 29(10):3053-62. PubMed ID: 10540316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1.
    Kishida KT; Pao M; Holland SM; Klann E
    J Neurochem; 2005 Jul; 94(2):299-306. PubMed ID: 15998281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMDA receptor activation induces glutamate release through nitric oxide synthesis in guinea pig dentate gyrus.
    Nei K; Matsuyama S; Shuntoh H; Tanaka C
    Brain Res; 1996 Jul; 728(1):105-10. PubMed ID: 8864303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA receptor activation increases free radical production through nitric oxide and NOX2.
    Girouard H; Wang G; Gallo EF; Anrather J; Zhou P; Pickel VM; Iadecola C
    J Neurosci; 2009 Feb; 29(8):2545-52. PubMed ID: 19244529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid beta-peptide activates nuclear factor-kappaB through an N-methyl-D-aspartate signaling pathway in cultured cerebellar cells.
    Kawamoto EM; Lepsch LB; Boaventura MF; Munhoz CD; Lima LS; Yshii LM; Avellar MC; Curi R; Mattson MP; Scavone C
    J Neurosci Res; 2008 Mar; 86(4):845-60. PubMed ID: 17969100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted disruption of PSD-93 gene reduces platelet-activating factor-induced neurotoxicity in cultured cortical neurons.
    Xu Y; Zhang B; Hua Z; Johns RA; Bredt DS; Tao YX
    Exp Neurol; 2004 Sep; 189(1):16-24. PubMed ID: 15296832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase.
    Izumi Y; Tokuda K; Zorumski CF
    Hippocampus; 2008; 18(3):258-65. PubMed ID: 18000819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of N-methyl-d-aspartate receptor blockade on neuronal plasticity and gastrointestinal transit delay induced by ischemia/reperfusion in rats.
    Calcina F; Barocelli E; Bertoni S; Furukawa O; Kaunitz J; Impicciatore M; Sternini C
    Neuroscience; 2005; 134(1):39-49. PubMed ID: 15939544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-induced cerebral vasodilatation in vivo involves activation of phosphatidylinositol-3 kinase, NADPH-oxidase, and nitric oxide synthase.
    Paravicini TM; Miller AA; Drummond GR; Sobey CG
    J Cereb Blood Flow Metab; 2006 Jun; 26(6):836-45. PubMed ID: 16222243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular zinc is a critical intermediate in the excitotoxic cascade.
    Granzotto A; Sensi SL
    Neurobiol Dis; 2015 Sep; 81():25-37. PubMed ID: 25940914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution.
    Abulrob A; Tauskela JS; Mealing G; Brunette E; Faid K; Stanimirovic D
    J Neurochem; 2005 Mar; 92(6):1477-86. PubMed ID: 15748165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death.
    Mander P; Borutaite V; Moncada S; Brown GC
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):208-15. PubMed ID: 15558752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Death of septal cholinergic neurons produced by chronic exposure to glutamate is prevented by the noncompetitive NMDA receptor/channel antagonist, MK-801: role of nerve growth factor and nitric oxide.
    Michel PP; Agid Y
    J Neurosci Res; 1995 Apr; 40(6):764-75. PubMed ID: 7629890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.
    Haberny SL; Carr KD
    Neuroscience; 2005; 132(4):1035-43. PubMed ID: 15857708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of N-methyl-D-aspartate receptor subunits involved in acute ammonia toxicity.
    Kitano T; Matsumura S; Seki T; Hikida T; Sakimura K; Nagano T; Mishina M; Nakanishi S; Ito S
    Neurochem Int; 2004 Jan; 44(2):83-90. PubMed ID: 12971910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo modulation of nitric oxide concentration dynamics upon glutamatergic neuronal activation in the hippocampus.
    Lourenço CF; Santos R; Barbosa RM; Gerhardt G; Cadenas E; Laranjinha J
    Hippocampus; 2011 Jun; 21(6):622-30. PubMed ID: 20169537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary Zn deficiency does not influence systemic blood pressure and vascular nitric oxide signaling in normotensive rats.
    Sato M; Kurihara N; Moridaira K; Sakamoto H; Tamura J; Wada O; Yanagisawa H
    Biol Trace Elem Res; 2003 Feb; 91(2):157-72. PubMed ID: 12719611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.