BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20211437)

  • 21. Hydrogen Sulfide Switch Phenomenon Regulating Autophagy in Cardiovascular Diseases.
    Luo W; Gui DD; Yan BJ; Ren Z; Peng LJ; Wei DH; Liu LS; Zhang DW; Jiang ZS
    Cardiovasc Drugs Ther; 2020 Feb; 34(1):113-121. PubMed ID: 32090295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pregnancy-Associated Plasma Protein-A and its Role in Cardiovascular Disease. Biology, Experimental/Clinical Evidences and Potential Therapeutic Approaches.
    Ziviello F; Conte S; Cimmino G; Sasso FC; Trimarco B; Cirillo P
    Curr Vasc Pharmacol; 2017; 15(3):197-206. PubMed ID: 28034366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of multifunctional compounds for cardiovascular disease: from natural scaffolds to "classical" multitarget approach.
    Bisi A; Gobbi S; Belluti F; Rampa A
    Curr Med Chem; 2013; 20(13):1759-82. PubMed ID: 23410171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High content screening for modulators of cardiovascular or global developmental pathways in zebrafish.
    Williams CH; Hong CC
    Methods Mol Biol; 2015; 1263():167-74. PubMed ID: 25618344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of geranylgeranylacetone upon cardiovascular diseases.
    Zeng S; Wang H; Chen Z; Cao Q; Hu L; Wu Y
    Cardiovasc Ther; 2018 Aug; 36(4):e12331. PubMed ID: 29656548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target.
    Zhou H; Li N; Yuan Y; Jin YG; Guo H; Deng W; Tang QZ
    Basic Res Cardiol; 2018 Aug; 113(5):37. PubMed ID: 30094473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relaxin' the Heart: A Novel Therapeutic Modality.
    Raleigh JM; Toldo S; Das A; Abbate A; Salloum FN
    J Cardiovasc Pharmacol Ther; 2016 Jul; 21(4):353-62. PubMed ID: 26589290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development.
    Del Álamo JC; Lemons D; Serrano R; Savchenko A; Cerignoli F; Bodmer R; Mercola M
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1717-27. PubMed ID: 26952934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of vascular mechanisms: bridging the gap between basic research and clinical trials.
    Collier J; Vallance P
    Trends Pharmacol Sci; 1993 Jul; 14(7):257-8. PubMed ID: 8212320
    [No Abstract]   [Full Text] [Related]  

  • 30. Navigating the Future of Cardiovascular Drug Development-Leveraging Novel Approaches to Drive Innovation and Drug Discovery: Summary of Findings from the Novel Cardiovascular Therapeutics Conference.
    Povsic TJ; Scott R; Mahaffey KW; Blaustein R; Edelberg JM; Lefkowitz MP; Solomon SD; Fox JC; Healy KE; Khakoo AY; Losordo DW; Malik FI; Monia BP; Montgomery RL; Riesmeyer J; Schwartz GG; Zelenkofske SL; Wu JC; Wasserman SM; Roe MT
    Cardiovasc Drugs Ther; 2017 Aug; 31(4):445-458. PubMed ID: 28735360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colchicine for the treatment of cardiovascular diseases: old drug, new targets.
    Andreis A; Imazio M; De Ferrari GM
    J Cardiovasc Med (Hagerstown); 2021 Jan; 22(1):1-8. PubMed ID: 32858634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilization of Multidimensional Data in the Analysis of Ultra-High-Throughput High Content Phenotypic Screens.
    Wardwell-Swanson J; Hu Y
    Methods Mol Biol; 2018; 1683():267-290. PubMed ID: 29082498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abstracts of the 11th International Congress on Cardiovascular Pharmacotherapy. Montreal, Canada, 18-21 May 2002.
    Cardiovasc Drugs Ther; 2002; 16 Suppl 1():5-116. PubMed ID: 12108434
    [No Abstract]   [Full Text] [Related]  

  • 34. Abstracts of the 13th International Congress on Cardiovascular Pharmacotherapy. November 29-December 2, 2007. Antalya, Turkey.
    Remme WJ
    Cardiovasc Drugs Ther; 2007 Nov; 21 Suppl 1(1):S6-43. PubMed ID: 17963033
    [No Abstract]   [Full Text] [Related]  

  • 35. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE.
    Gut P; Reischauer S; Stainier DYR; Arnaout R
    Physiol Rev; 2017 Jul; 97(3):889-938. PubMed ID: 28468832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research.
    Seto SW; Kiat H; Lee SM; Bensoussan A; Sun YT; Hoi MP; Chang D
    Eur J Pharmacol; 2015 Dec; 768():77-86. PubMed ID: 26494630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens.
    Liu X; Baarsma HA; Thiam CH; Montrone C; Brauner B; Fobo G; Heier JS; Duscha S; Königshoff M; Angeli V; Ruepp A; Campillos M
    Cell Chem Biol; 2016 Oct; 23(10):1302-1313. PubMed ID: 27667560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autophagy in cardiovascular biology.
    Lavandero S; Chiong M; Rothermel BA; Hill JA
    J Clin Invest; 2015 Jan; 125(1):55-64. PubMed ID: 25654551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Opioids in Cardiovascular Disease: Therapeutic Options.
    Rawal H; Patel BM
    J Cardiovasc Pharmacol Ther; 2018 Jul; 23(4):279-291. PubMed ID: 29528698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel insights into the role of urotensin II in cardiovascular disease.
    Pereira-Castro J; Brás-Silva C; Fontes-Sousa AP
    Drug Discov Today; 2019 Nov; 24(11):2170-2180. PubMed ID: 31430542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.