These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20211499)

  • 1. Novel antifouling agent--zinc pyrithione: short- and long-term effects on survival and reproduction of the marine polychaete Dinophilus gyrociliatus.
    Marcheselli M; Conzo F; Mauri M; Simonini R
    Aquat Toxicol; 2010 Jun; 98(2):204-10. PubMed ID: 20211499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel antifouling agent-zinc pyrithione: stress induction and genotoxicity to the marine mussel Mytilus galloprovincialis.
    Marcheselli M; Azzoni P; Mauri M
    Aquat Toxicol; 2011 Mar; 102(1-2):39-47. PubMed ID: 21371611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria.
    Bao VW; Leung KM; Kwok KW; Zhang AQ; Lui GC
    Mar Pollut Bull; 2008; 57(6-12):616-23. PubMed ID: 18495176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel antifouling agent zinc pyrithione: determination, acute toxicity, and bioaccumulation in marine mussels (Mytilus galloprovincialis).
    Marcheselli M; Rustichelli C; Mauri M
    Environ Toxicol Chem; 2010 Nov; 29(11):2583-92. PubMed ID: 20853456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Lui GC; Leung KM
    Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of zinc exposure on the polychaete Dinophilus gyrociliatus: a life-table response experiment.
    Mauri M; Baraldi E; Simonini R
    Aquat Toxicol; 2003 Oct; 65(1):93-100. PubMed ID: 12932704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demographic responses of the polychaete Dinophilus gyrociliatus to chromium exposure.
    Mauri M; Simonini R; Baraldi E
    Environ Toxicol Chem; 2002 Sep; 21(9):1903-7. PubMed ID: 12206430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrithiones as antifoulants: environmental fate and loss of toxicity.
    Turley PA; Fenn RJ; Ritter JC; Callow ME
    Biofouling; 2005; 21(1):31-40. PubMed ID: 16019389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans.
    Sánchez-Bayo F; Goka K
    Aquat Toxicol; 2006 Jun; 78(3):262-71. PubMed ID: 16690142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of zinc pyrithione on biochemical parameters of the freshwater Asian clam Corbicula fluminea.
    Nogueira AF; Pereira JL; Antunes SC; Gonçalves FJM; Nunes B
    Aquat Toxicol; 2018 Nov; 204():100-106. PubMed ID: 30227300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity and metabolism of copper pyrithione and its degradation product, 2,2'-dipyridyldisulfide in a marine polychaete.
    Mochida K; Amano H; Onduka T; Kakuno A; Fujii K
    Chemosphere; 2011 Jan; 82(3):390-7. PubMed ID: 20965543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater.
    Onduka T; Mochida K; Harino H; Ito K; Kakuno A; Fujii K
    Arch Environ Contam Toxicol; 2010 May; 58(4):991-7. PubMed ID: 19967345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral and biochemical effects of the antifouler and antidandruff zinc pyrithione on the freshwater fish Gambusia holbrooki.
    Falcão B; Marques M; Nunes B
    Fish Physiol Biochem; 2019 Aug; 45(4):1495-1512. PubMed ID: 31001754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to sublethal concentrations of zinc pyrithione inhibits growth and survival of marine polychaete through induction of oxidative stress and DNA damage.
    Haque MN; Nam SE; Eom HJ; Kim SK; Rhee JS
    Mar Pollut Bull; 2020 Jul; 156():111276. PubMed ID: 32510415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species.
    Avelelas F; Martins R; Oliveira T; Maia F; Malheiro E; Soares AMVM; Loureiro S; Tedim J
    Mar Biotechnol (NY); 2017 Apr; 19(2):164-174. PubMed ID: 28280946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated approach to assess the impacts of zinc pyrithione at different levels of biological organization in marine mussels.
    Dallas LJ; Turner A; Bean TP; Lyons BP; Jha AN
    Chemosphere; 2018 Apr; 196():531-539. PubMed ID: 29329085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunotoxicity in ascidians: antifouling compounds alternative to organotins-IV. The case of zinc pyrithione.
    Cima F; Ballarin L
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 Mar; 169():16-24. PubMed ID: 25576186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospray ionization mass spectrometric observation of ligand exchange of zinc pyrithione with amino acids.
    Moriwaki H; Okabayashi M; Watanabe T; Kawasaki H; Arakawa R
    Rapid Commun Mass Spectrom; 2009 Jul; 23(14):2161-6. PubMed ID: 19517459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the effects of sublethal concentrations of biofoulants, copper pyrithione and zinc pyrithione on a marine mysid - A multigenerational study.
    Lee S; Haque MN; Lee DH; Rhee JS
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Sep; 271():109694. PubMed ID: 37394131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity reduction of metal pyrithiones by near ultraviolet irradiation.
    Okamura H; Kobayashi N; Miyanaga M; Nogami Y
    Environ Toxicol; 2006 Aug; 21(4):305-9. PubMed ID: 16841307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.