BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 20211593)

  • 21. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.
    Regelsberger G; Jakopitsch C; Engleder M; Rüker F; Peschek GA; Obinger C
    Biochemistry; 1999 Aug; 38(32):10480-8. PubMed ID: 10441144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase.
    Coulter ED; Kurtz DM
    Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of structure and function of Class I peroxidases.
    Zámocký M; Furtmüller PG; Obinger C
    Arch Biochem Biophys; 2010 Aug; 500(1):45-57. PubMed ID: 20371361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide.
    Timofeevski SL; Reading NS; Aust SD
    Arch Biochem Biophys; 1998 Aug; 356(2):287-95. PubMed ID: 9705219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox equilibria in hydroxylamine oxidoreductase. Electrostatic control of electron redistribution in multielectron oxidative processes.
    Kurnikov IV; Ratner MA; Pacheco AA
    Biochemistry; 2005 Feb; 44(6):1856-63. PubMed ID: 15697211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of axial ligands in the reactivity of Mn peroxidase from Phanerochaete chrysosporium.
    Whitwam RE; Koduri RS; Natan M; Tien M
    Biochemistry; 1999 Jul; 38(30):9608-16. PubMed ID: 10423238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of the ascorbate peroxidase-ascorbate complex.
    Sharp KH; Mewies M; Moody PC; Raven EL
    Nat Struct Biol; 2003 Apr; 10(4):303-7. PubMed ID: 12640445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties.
    Zederbauer M; Furtmüller PG; Brogioni S; Jakopitsch C; Smulevich G; Obinger C
    Nat Prod Rep; 2007 Jun; 24(3):571-84. PubMed ID: 17534531
    [No Abstract]   [Full Text] [Related]  

  • 29. One-electron oxidations by peroxidases.
    Dunford HB
    Xenobiotica; 1995 Jul; 25(7):725-33. PubMed ID: 7483669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox properties of the Fe3+/Fe2+ couple in Arthromyces ramosus class II peroxidase and its cyanide adduct.
    Battistuzzi G; Bellei M; De Rienzo F; Sola M
    J Biol Inorg Chem; 2006 Jul; 11(5):586-92. PubMed ID: 16791642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of protein radical reactions of ferrylmyoglobin by the water-soluble analog of vitamin E, Trolox C.
    Giulivi C; Cadenas E
    Arch Biochem Biophys; 1993 May; 303(1):152-8. PubMed ID: 8489259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of oxidative halophenol dehalogenation by Amphitrite ornata dehaloperoxidase is initiated by H2O2 binding and involves two consecutive one-electron steps: role of ferryl intermediates.
    Osborne RL; Coggins MK; Raner GM; Walla M; Dawson JH
    Biochemistry; 2009 May; 48(20):4231-8. PubMed ID: 19371065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives.
    Jantschko W; Furtmüller PG; Allegra M; Livrea MA; Jakopitsch C; Regelsberger G; Obinger C
    Arch Biochem Biophys; 2002 Feb; 398(1):12-22. PubMed ID: 11811944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics.
    Weiland TR; Kundu S; Trent JT; Hoy JA; Hargrove MS
    J Am Chem Soc; 2004 Sep; 126(38):11930-5. PubMed ID: 15382928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and mechanism in the bacterial dihaem cytochrome c peroxidases.
    Pettigrew GW; Echalier A; Pauleta SR
    J Inorg Biochem; 2006 Apr; 100(4):551-67. PubMed ID: 16434100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EPR detection and characterization of lignin peroxidase porphyrin pi-cation radical.
    Khindaria A; Aust SD
    Biochemistry; 1996 Oct; 35(40):13107-11. PubMed ID: 8855947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox thermodynamics of the Fe(III)/Fe(II) couple of human myeloperoxidase in its high-spin and low-spin forms.
    Battistuzzi G; Bellei M; Zederbauer M; Furtmüller PG; Sola M; Obinger C
    Biochemistry; 2006 Oct; 45(42):12750-5. PubMed ID: 17042493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High catalytic activities of artificial peroxidases based on supramolecular hydrogels that contain heme models.
    Wang Q; Yang Z; Ma M; Chang CK; Xu B
    Chemistry; 2008; 14(16):5073-8. PubMed ID: 18399529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active site structure and catalytic mechanisms of human peroxidases.
    Furtmüller PG; Zederbauer M; Jantschko W; Helm J; Bogner M; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2006 Jan; 445(2):199-213. PubMed ID: 16288970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.