These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 20211604)

  • 1. ArfGAP1 interacts with coat proteins through tryptophan-based motifs.
    Rawet M; Levi-Tal S; Szafer-Glusman E; Parnis A; Cassel D
    Biochem Biophys Res Commun; 2010 Apr; 394(3):553-7. PubMed ID: 20211604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ArfGAP1 activity and COPI vesicle biogenesis.
    Beck R; Adolf F; Weimer C; Bruegger B; Wieland FT
    Traffic; 2009 Mar; 10(3):307-15. PubMed ID: 19055691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature.
    Mesmin B; Drin G; Levi S; Rawet M; Cassel D; Bigay J; Antonny B
    Biochemistry; 2007 Feb; 46(7):1779-90. PubMed ID: 17253781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature.
    Bigay J; Gounon P; Robineau S; Antonny B
    Nature; 2003 Dec; 426(6966):563-6. PubMed ID: 14654841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells.
    Liu W; Duden R; Phair RD; Lippincott-Schwartz J
    J Cell Biol; 2005 Mar; 168(7):1053-63. PubMed ID: 15795316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the binding of tryptophan-based motifs by δ-COP.
    Suckling RJ; Poon PP; Travis SM; Majoul IV; Hughson FM; Evans PR; Duden R; Owen DJ
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14242-7. PubMed ID: 26578768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP.
    Sun Z; Anderl F; Fröhlich K; Zhao L; Hanke S; Brügger B; Wieland F; Béthune J
    Traffic; 2007 May; 8(5):582-93. PubMed ID: 17451557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif.
    Bigay J; Casella JF; Drin G; Mesmin B; Antonny B
    EMBO J; 2005 Jul; 24(13):2244-53. PubMed ID: 15944734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GAP domain and the SNARE, coatomer and cargo interaction region of the ArfGAP2/3 Glo3 are sufficient for Glo3 function.
    Schindler C; Rodriguez F; Poon PP; Singer RA; Johnston GC; Spang A
    Traffic; 2009 Sep; 10(9):1362-75. PubMed ID: 19602196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete determinants in ArfGAP2/3 conferring Golgi localization and regulation by the COPI coat.
    Kliouchnikov L; Bigay J; Mesmin B; Parnis A; Rawet M; Goldfeder N; Antonny B; Cassel D
    Mol Biol Cell; 2009 Feb; 20(3):859-69. PubMed ID: 19109418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking.
    Weimer C; Beck R; Eckert P; Reckmann I; Moelleken J; Brügger B; Wieland F
    J Cell Biol; 2008 Nov; 183(4):725-35. PubMed ID: 19015319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of human zeta-COP: direct evidences for structural similarity between COP I and clathrin-adaptor coats.
    Yu W; Lin J; Jin C; Xia B
    J Mol Biol; 2009 Mar; 386(4):903-12. PubMed ID: 19167404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions.
    Ambroggio E; Sorre B; Bassereau P; Goud B; Manneville JB; Antonny B
    EMBO J; 2010 Jan; 29(2):292-303. PubMed ID: 19927117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Arf1p GTPase-activating protein Glo3p executes its regulatory function through a conserved repeat motif at its C-terminus.
    Yahara N; Sato K; Nakano A
    J Cell Sci; 2006 Jun; 119(Pt 12):2604-12. PubMed ID: 16735437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similar subunit interactions contribute to assembly of clathrin adaptor complexes and COPI complex: analysis using yeast three-hybrid system.
    Takatsu H; Futatsumori M; Yoshino K; Yoshida Y; Shin HW; Nakayama K
    Biochem Biophys Res Commun; 2001 Jun; 284(4):1083-9. PubMed ID: 11409905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two human ARFGAPs associated with COP-I-coated vesicles.
    Frigerio G; Grimsey N; Dale M; Majoul I; Duden R
    Traffic; 2007 Nov; 8(11):1644-55. PubMed ID: 17760859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorting signals in the cytosolic tail of membrane proteins involved in the interaction with plant ARF1 and coatomer.
    Contreras I; Ortiz-Zapater E; Aniento F
    Plant J; 2004 May; 38(4):685-98. PubMed ID: 15125774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP.
    Eugster A; Frigerio G; Dale M; Duden R
    EMBO J; 2000 Aug; 19(15):3905-17. PubMed ID: 10921873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal dynamics of the COPI vesicle machinery.
    Elsner M; Hashimoto H; Simpson JC; Cassel D; Nilsson T; Weiss M
    EMBO Rep; 2003 Oct; 4(10):1000-4. PubMed ID: 14502225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs.
    Shiba Y; Randazzo PA
    Histol Histopathol; 2012 Sep; 27(9):1143-53. PubMed ID: 22806901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.