BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 20211604)

  • 1. ArfGAP1 interacts with coat proteins through tryptophan-based motifs.
    Rawet M; Levi-Tal S; Szafer-Glusman E; Parnis A; Cassel D
    Biochem Biophys Res Commun; 2010 Apr; 394(3):553-7. PubMed ID: 20211604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ArfGAP1 activity and COPI vesicle biogenesis.
    Beck R; Adolf F; Weimer C; Bruegger B; Wieland FT
    Traffic; 2009 Mar; 10(3):307-15. PubMed ID: 19055691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature.
    Mesmin B; Drin G; Levi S; Rawet M; Cassel D; Bigay J; Antonny B
    Biochemistry; 2007 Feb; 46(7):1779-90. PubMed ID: 17253781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature.
    Bigay J; Gounon P; Robineau S; Antonny B
    Nature; 2003 Dec; 426(6966):563-6. PubMed ID: 14654841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells.
    Liu W; Duden R; Phair RD; Lippincott-Schwartz J
    J Cell Biol; 2005 Mar; 168(7):1053-63. PubMed ID: 15795316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the binding of tryptophan-based motifs by δ-COP.
    Suckling RJ; Poon PP; Travis SM; Majoul IV; Hughson FM; Evans PR; Duden R; Owen DJ
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14242-7. PubMed ID: 26578768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP.
    Sun Z; Anderl F; Fröhlich K; Zhao L; Hanke S; Brügger B; Wieland F; Béthune J
    Traffic; 2007 May; 8(5):582-93. PubMed ID: 17451557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif.
    Bigay J; Casella JF; Drin G; Mesmin B; Antonny B
    EMBO J; 2005 Jul; 24(13):2244-53. PubMed ID: 15944734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GAP domain and the SNARE, coatomer and cargo interaction region of the ArfGAP2/3 Glo3 are sufficient for Glo3 function.
    Schindler C; Rodriguez F; Poon PP; Singer RA; Johnston GC; Spang A
    Traffic; 2009 Sep; 10(9):1362-75. PubMed ID: 19602196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete determinants in ArfGAP2/3 conferring Golgi localization and regulation by the COPI coat.
    Kliouchnikov L; Bigay J; Mesmin B; Parnis A; Rawet M; Goldfeder N; Antonny B; Cassel D
    Mol Biol Cell; 2009 Feb; 20(3):859-69. PubMed ID: 19109418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking.
    Weimer C; Beck R; Eckert P; Reckmann I; Moelleken J; Brügger B; Wieland F
    J Cell Biol; 2008 Nov; 183(4):725-35. PubMed ID: 19015319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of human zeta-COP: direct evidences for structural similarity between COP I and clathrin-adaptor coats.
    Yu W; Lin J; Jin C; Xia B
    J Mol Biol; 2009 Mar; 386(4):903-12. PubMed ID: 19167404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions.
    Ambroggio E; Sorre B; Bassereau P; Goud B; Manneville JB; Antonny B
    EMBO J; 2010 Jan; 29(2):292-303. PubMed ID: 19927117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Arf1p GTPase-activating protein Glo3p executes its regulatory function through a conserved repeat motif at its C-terminus.
    Yahara N; Sato K; Nakano A
    J Cell Sci; 2006 Jun; 119(Pt 12):2604-12. PubMed ID: 16735437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similar subunit interactions contribute to assembly of clathrin adaptor complexes and COPI complex: analysis using yeast three-hybrid system.
    Takatsu H; Futatsumori M; Yoshino K; Yoshida Y; Shin HW; Nakayama K
    Biochem Biophys Res Commun; 2001 Jun; 284(4):1083-9. PubMed ID: 11409905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two human ARFGAPs associated with COP-I-coated vesicles.
    Frigerio G; Grimsey N; Dale M; Majoul I; Duden R
    Traffic; 2007 Nov; 8(11):1644-55. PubMed ID: 17760859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorting signals in the cytosolic tail of membrane proteins involved in the interaction with plant ARF1 and coatomer.
    Contreras I; Ortiz-Zapater E; Aniento F
    Plant J; 2004 May; 38(4):685-98. PubMed ID: 15125774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP.
    Eugster A; Frigerio G; Dale M; Duden R
    EMBO J; 2000 Aug; 19(15):3905-17. PubMed ID: 10921873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal dynamics of the COPI vesicle machinery.
    Elsner M; Hashimoto H; Simpson JC; Cassel D; Nilsson T; Weiss M
    EMBO Rep; 2003 Oct; 4(10):1000-4. PubMed ID: 14502225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs.
    Shiba Y; Randazzo PA
    Histol Histopathol; 2012 Sep; 27(9):1143-53. PubMed ID: 22806901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.