BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20211620)

  • 21. Janus kinase 3: a novel target for selective transplant immunosupression.
    Podder H; Kahan BD
    Expert Opin Ther Targets; 2004 Dec; 8(6):613-29. PubMed ID: 15584866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Janus kinase 3 regulates interleukin 2-induced mucosal wound repair through tyrosine phosphorylation of villin.
    Kumar N; Mishra J; Narang VS; Waters CM
    J Biol Chem; 2007 Oct; 282(42):30341-5. PubMed ID: 17537734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells.
    Nagy ZS; Ross JA; Rodriguez G; Balint BL; Szeles L; Nagy L; Kirken RA
    PLoS One; 2013; 8(2):e57326. PubMed ID: 23451206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo impact of JAK3 A573V mutation revealed using zebrafish.
    Basheer F; Bulleeraz V; Ngo VQT; Liongue C; Ward AC
    Cell Mol Life Sci; 2022 May; 79(6):322. PubMed ID: 35622134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into kinetic mechanism of Janus kinase 3 and its inhibition by tofacitinib.
    Hekmatnejad M; Conwell S; Lok SM; Kutach A; Shaw D; Fang E; Swinney DC
    Arch Biochem Biophys; 2016 Dec; 612():22-34. PubMed ID: 27555492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting JAK3 tyrosine kinase-linked signal transduction pathways with rationally-designed inhibitors.
    Uckun FM; Vassilev A; Dibirdik I; Tibbles H
    Anticancer Agents Med Chem; 2007 Nov; 7(6):612-23. PubMed ID: 18045056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Jak3-regulated genes: DNA array analysis of concanavalin a-interleukin-2-activated chicken T cells treated with a specific jak3 inhibitor.
    Kampa D; Burnside J
    J Interferon Cytokine Res; 2002 Sep; 22(9):975-80. PubMed ID: 12396719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. JAK3 pathway is constitutively active in B-lineage acute lymphoblastic leukemia.
    Uckun FM; Pitt J; Qazi S
    Expert Rev Anticancer Ther; 2011 Jan; 11(1):37-48. PubMed ID: 21070101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation of human Jak3 at tyrosines 904 and 939 positively regulates its activity.
    Cheng H; Ross JA; Frost JA; Kirken RA
    Mol Cell Biol; 2008 Apr; 28(7):2271-82. PubMed ID: 18250158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eriocalyxin B induces apoptosis in lymphoma cells through multiple cellular signaling pathways.
    Zhang YW; Jiang XX; Chen QS; Shi WY; Wang L; Sun HD; Shen ZX; Chen Z; Chen SJ; Zhao WL
    Exp Hematol; 2010 Mar; 38(3):191-201. PubMed ID: 20045442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of mutant alleles of JAK3 in pediatric patients with acute lymphoblastic leukemia.
    Yin C; Sandoval C; Baeg GH
    Leuk Lymphoma; 2015 May; 56(5):1502-6. PubMed ID: 25146434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma.
    Elliott NE; Cleveland SM; Grann V; Janik J; Waldmann TA; Davé UP
    Blood; 2011 Oct; 118(14):3911-21. PubMed ID: 21821710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL.
    Degryse S; Bornschein S; de Bock CE; Leroy E; Vanden Bempt M; Demeyer S; Jacobs K; Geerdens E; Gielen O; Soulier J; Harrison CJ; Constantinescu SN; Cools J
    Blood; 2018 Jan; 131(4):421-425. PubMed ID: 29187379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. JAK3: a two-faced player in hematological disorders.
    Cornejo MG; Boggon TJ; Mercher T
    Int J Biochem Cell Biol; 2009 Dec; 41(12):2376-9. PubMed ID: 19747563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression.
    Yuan S; Wang X; Hou S; Guo T; Lan Y; Yang S; Zhao F; Gao J; Wang Y; Chu Y; Shi J; Cheng T; Yuan W
    Leukemia; 2022 Feb; 36(2):370-382. PubMed ID: 34465864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular mechanism of interleukin-2-induced mucosal homeostasis.
    Mishra J; Waters CM; Kumar N
    Am J Physiol Cell Physiol; 2012 Mar; 302(5):C735-47. PubMed ID: 22116305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Permission to proceed: Jak3 and STAT5 signaling molecules give the green light for T helper 1 cell differentiation.
    Murphy KM
    Immunity; 2008 Jun; 28(6):725-7. PubMed ID: 18549792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Are peptides a solution for the treatment of hyperactivated JAK3 pathways?
    Dullius A; Rocha CM; Laufer S; de Souza CFV; Goettert MI
    Inflammopharmacology; 2019 Jun; 27(3):433-452. PubMed ID: 30929155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transforming Mutations of Jak3 (A573V and M511I) Show Differential Sensitivity to Selective Jak3 Inhibitors.
    Martinez GS; Ross JA; Kirken RA
    Clin Cancer Drugs; 2016; 3(2):131-137. PubMed ID: 29046866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Targeted Quantitative Proteomic Method Revealed a Substantial Reprogramming of Kinome during Melanoma Metastasis.
    Miao W; Li L; Liu X; Qi TF; Guo L; Huang M; Wang Y
    Sci Rep; 2020 Feb; 10(1):2485. PubMed ID: 32051510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.