BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20211621)

  • 1. QSOX contains a pseudo-dimer of functional and degenerate sulfhydryl oxidase domains.
    Alon A; Heckler EJ; Thorpe C; Fass D
    FEBS Lett; 2010 Apr; 584(8):1521-5. PubMed ID: 20211621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quiescin sulfhydryl oxidase from Trypanosoma brucei: catalytic activity and mechanism of a QSOX family member with a single thioredoxin domain.
    Kodali VK; Thorpe C
    Biochemistry; 2010 Mar; 49(9):2075-85. PubMed ID: 20121244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversification of quiescin sulfhydryl oxidase in a preserved framework for redox relay.
    Limor-Waisberg K; Ben-Dor S; Fass D
    BMC Evol Biol; 2013 Mar; 13():70. PubMed ID: 23510202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erv2 and quiescin sulfhydryl oxidases: Erv-domain enzymes associated with the secretory pathway.
    Sevier CS
    Antioxid Redox Signal; 2012 Apr; 16(8):800-8. PubMed ID: 22142242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Bombyx mori nucleopolyhedrovirus ORF75 reveals a pseudo-dimer of thiol oxidase domains with a putative substrate-binding pocket.
    Hou Y; Xia Q; Yuan YA
    J Gen Virol; 2012 Oct; 93(Pt 10):2142-2151. PubMed ID: 22764321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Going through the barrier: coupled disulfide exchange reactions promote efficient catalysis in quiescin sulfhydryl oxidase.
    Israel BA; Kodali VK; Thorpe C
    J Biol Chem; 2014 Feb; 289(8):5274-84. PubMed ID: 24379406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-domain redox communication in flavoenzymes of the quiescin/sulfhydryl oxidase family: role of a thioredoxin domain in disulfide bond formation.
    Raje S; Thorpe C
    Biochemistry; 2003 Apr; 42(15):4560-8. PubMed ID: 12693953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inhibitory antibody blocks the first step in the dithiol/disulfide relay mechanism of the enzyme QSOX1.
    Grossman I; Alon A; Ilani T; Fass D
    J Mol Biol; 2013 Nov; 425(22):4366-78. PubMed ID: 23867277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis-Proline mutants of quiescin sulfhydryl oxidase 1 with altered redox properties undermine extracellular matrix integrity and cell adhesion in fibroblast cultures.
    Javitt G; Grossman-Haham I; Alon A; Resnick E; Mutsafi Y; Ilani T; Fass D
    Protein Sci; 2019 Jan; 28(1):228-238. PubMed ID: 30367560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein substrate discrimination in the quiescin sulfhydryl oxidase (QSOX) family.
    Codding JA; Israel BA; Thorpe C
    Biochemistry; 2012 May; 51(20):4226-35. PubMed ID: 22582951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human quiescin-sulfhydryl oxidase, QSOX1: probing internal redox steps by mutagenesis.
    Heckler EJ; Alon A; Fass D; Thorpe C
    Biochemistry; 2008 Apr; 47(17):4955-63. PubMed ID: 18393449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative protein folding and the Quiescin-sulfhydryl oxidase family of flavoproteins.
    Kodali VK; Thorpe C
    Antioxid Redox Signal; 2010 Oct; 13(8):1217-30. PubMed ID: 20136510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a baculovirus sulfhydryl oxidase, a highly divergent member of the erv flavoenzyme family.
    Hakim M; Mandelbaum A; Fass D
    J Virol; 2011 Sep; 85(18):9406-13. PubMed ID: 21752922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetics and enzymology of plant quiescin sulfhydryl oxidase.
    Limor-Waisberg K; Alon A; Mehlman T; Fass D
    FEBS Lett; 2012 Nov; 586(23):4119-25. PubMed ID: 23068612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolytic processing of QSOX1A ensures efficient secretion of a potent disulfide catalyst.
    Rudolf J; Pringle MA; Bulleid NJ
    Biochem J; 2013 Sep; 454(2):181-90. PubMed ID: 23713614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin-linked Erv-family sulfhydryl oxidases release superoxide anion during catalytic turnover.
    Daithankar VN; Wang W; Trujillo JR; Thorpe C
    Biochemistry; 2012 Jan; 51(1):265-72. PubMed ID: 22148553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the smallest active fragment of HsQSOX1b and finding a highly efficient oxidative engine.
    Zheng W; Zhang W; Hu W; Zhang C; Yang Y
    PLoS One; 2012; 7(7):e40935. PubMed ID: 22911720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural determinants of substrate access to the disulfide oxidase Erv2p.
    Vala A; Sevier CS; Kaiser CA
    J Mol Biol; 2005 Dec; 354(4):952-66. PubMed ID: 16288914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quiescin/sulfhydryl oxidase 1b (QSOX1b) induces migration and proliferation of vascular smooth muscle cells by distinct redox pathways.
    França KC; Martinez PA; Prado ML; Lo SM; Borges BE; Zanata SM; San Martin A; Nakao LS
    Arch Biochem Biophys; 2020 Jan; 679():108220. PubMed ID: 31812669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.