These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
735 related articles for article (PubMed ID: 20211696)
1. Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not to the same extent in one of the attention-deficit/hyperactivity disorder inattentive type. Roessner V; Sagvolden T; Dasbanerjee T; Middleton FA; Faraone SV; Walaas SI; Becker A; Rothenberger A; Bock N Neuroscience; 2010 Jun; 167(4):1183-91. PubMed ID: 20211696 [TBL] [Abstract][Full Text] [Related]
2. Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Jucaite A; Fernell E; Halldin C; Forssberg H; Farde L Biol Psychiatry; 2005 Feb; 57(3):229-38. PubMed ID: 15691523 [TBL] [Abstract][Full Text] [Related]
3. The spontaneously hypertensive and Wistar Kyoto rat models of ADHD exhibit sub-regional differences in dopamine release and uptake in the striatum and nucleus accumbens. Miller EM; Pomerleau F; Huettl P; Russell VA; Gerhardt GA; Glaser PE Neuropharmacology; 2012 Dec; 63(8):1327-34. PubMed ID: 22960443 [TBL] [Abstract][Full Text] [Related]
4. Behavioral and genetic evidence for a novel animal model of Attention-Deficit/Hyperactivity Disorder Predominantly Inattentive Subtype. Sagvolden T; Dasbanerjee T; Zhang-James Y; Middleton F; Faraone S Behav Brain Funct; 2008 Dec; 4():56. PubMed ID: 19046438 [TBL] [Abstract][Full Text] [Related]
5. The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Li Q; Lu G; Antonio GE; Mak YT; Rudd JA; Fan M; Yew DT Neurochem Int; 2007 May; 50(6):848-57. PubMed ID: 17395336 [TBL] [Abstract][Full Text] [Related]
6. Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. van den Bergh FS; Bloemarts E; Chan JS; Groenink L; Olivier B; Oosting RS Pharmacol Biochem Behav; 2006 Mar; 83(3):380-90. PubMed ID: 16580713 [TBL] [Abstract][Full Text] [Related]
7. Dopamine transporter density and behavioral response to methylphenidate in a hyperlocomotor rat model. Muneoka K; Kuwagata M; Iwata M; Shirayama Y; Ogawa T; Takigawa M Congenit Anom (Kyoto); 2006 Sep; 46(3):155-9. PubMed ID: 16922923 [TBL] [Abstract][Full Text] [Related]
8. Rat models of ADHD. Sagvolden T; Johansen EB Curr Top Behav Neurosci; 2012; 9():301-15. PubMed ID: 21487952 [TBL] [Abstract][Full Text] [Related]
9. Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Pandolfo P; Machado NJ; Köfalvi A; Takahashi RN; Cunha RA Eur Neuropsychopharmacol; 2013 Apr; 23(4):317-28. PubMed ID: 22561003 [TBL] [Abstract][Full Text] [Related]
10. Glutamate-stimulated release of norepinephrine in hippocampal slices of animal models of attention-deficit/hyperactivity disorder (spontaneously hypertensive rat) and depression/anxiety-like behaviours (Wistar-Kyoto rat). Howells FM; Russell VA Brain Res; 2008 Mar; 1200():107-15. PubMed ID: 18295191 [TBL] [Abstract][Full Text] [Related]
11. Stimulus control in two rodent models of attention-deficit/hyperactivity disorder. Fox AE; Caramia SR; Haskell MM; Ramey AL; Singha D Behav Processes; 2017 Feb; 135():16-24. PubMed ID: 27864066 [TBL] [Abstract][Full Text] [Related]
12. Advancing the spontaneous hypertensive rat model of attention deficit/hyperactivity disorder. Kantak KM; Singh T; Kerstetter KA; Dembro KA; Mutebi MM; Harvey RC; Deschepper CF; Dwoskin LP Behav Neurosci; 2008 Apr; 122(2):340-57. PubMed ID: 18410173 [TBL] [Abstract][Full Text] [Related]
13. Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists. Langen B; Dost R Atten Defic Hyperact Disord; 2011 Mar; 3(1):1-12. PubMed ID: 21432613 [TBL] [Abstract][Full Text] [Related]
14. Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats. Kim H; Heo HI; Kim DH; Ko IG; Lee SS; Kim SE; Kim BK; Kim TW; Ji ES; Kim JD; Shin MS; Choi YW; Kim CJ Neurosci Lett; 2011 Oct; 504(1):35-9. PubMed ID: 21907264 [TBL] [Abstract][Full Text] [Related]
15. N-methyl-D-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Jensen V; Rinholm JE; Johansen TJ; Medin T; Storm-Mathisen J; Sagvolden T; Hvalby O; Bergersen LH Neuroscience; 2009 Jan; 158(1):353-64. PubMed ID: 18571865 [TBL] [Abstract][Full Text] [Related]
16. Nicotine-stimulated release of [3H]norepinephrine is reduced in the hippocampus of an animal model of attention-deficit/hyperactivity disorder, the spontaneously hypertensive rat. Sterley TL; Howells FM; Russell VA Brain Res; 2014 Jul; 1572():1-10. PubMed ID: 24833064 [TBL] [Abstract][Full Text] [Related]
17. The effect of chronic methylphenidate administration on presynaptic dopaminergic parameters in a rat model for ADHD. Simchon Y; Weizman A; Rehavi M Eur Neuropsychopharmacol; 2010 Oct; 20(10):714-20. PubMed ID: 20493667 [TBL] [Abstract][Full Text] [Related]
18. Striatal volume changes in a rat model of childhood attention-deficit/hyperactivity disorder. Hsu JW; Lee LC; Chen RF; Yen CT; Chen YS; Tsai ML Psychiatry Res; 2010 Oct; 179(3):338-41. PubMed ID: 20493538 [TBL] [Abstract][Full Text] [Related]
19. Differential behavioral and neurochemical effects of cocaine after early exposure to methylphenidate in an animal model of attention deficit hyperactivity disorder. Augustyniak PN; Kourrich S; Rezazadeh SM; Stewart J; Arvanitogiannis A Behav Brain Res; 2006 Feb; 167(2):379-82. PubMed ID: 16246436 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of the Thyroid Hormone-Responsive (THRSP) Gene in the Striatum Leads to the Development of Inattentive-like Phenotype in Mice. Custodio RJP; Botanas CJ; de la Peña JB; Dela Peña IJ; Kim M; Sayson LV; Abiero A; Ryoo ZY; Kim BN; Kim HJ; Cheong JH Neuroscience; 2018 Oct; 390():141-150. PubMed ID: 30138648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]