These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20211770)

  • 1. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.
    Rai S; Su Y; Pang W; Ruby R; Otis B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):552-61. PubMed ID: 20211770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.
    Boudot R; Li MD; Giordano V; Rolland N; Rolland PA; Vincent P
    Rev Sci Instrum; 2011 Mar; 82(3):034706. PubMed ID: 21456775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.
    Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An X-band, high power dielectric resonator oscillator for future military systems.
    Mizan MA; Sturzebecher D; Higgins T; Paolella A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):483-7. PubMed ID: 18263210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1.5-GHz voltage controlled oscillator with 3% tuning bandwidth using a two-pole DSBAR filter.
    Avramov I; Gilbert SR; Ruby R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):916-23. PubMed ID: 21622047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.
    Daugey T; Friedt JM; Martin G; Boudot R
    Rev Sci Instrum; 2015 Nov; 86(11):114703. PubMed ID: 26628155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low phase-noise sapphire crystal microwave oscillators: current status.
    Ivanov EN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):263-9. PubMed ID: 19251513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature high-frequency longitudinal wave mass sensors in liquid.
    Zhang H; Pang W; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):255-8. PubMed ID: 21244995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fully integrated W-band push-push CMOS VCO with low phase noise and wide tuning range.
    Wang TP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1307-19. PubMed ID: 21768016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Optimization of SHF Composite FBAR Resonators.
    Pillai G; Zope AA; Tsai JM; Li SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1864-1873. PubMed ID: 28981414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-niobate-based surface acoustic wave oscillator directly integrated with CMOS sustaining amplifier.
    Tanaka S; Park K; Esashi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1800-5. PubMed ID: 22899126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications.
    Lim J; Kim H; Jackson T; Choi K; Kenny D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1906-14. PubMed ID: 20875980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra temperature-stable bulk-acoustic-wave resonators with SiO2 compensation layer.
    Yu H; Pang W; Zhang H; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2102-9. PubMed ID: 18019248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 300-MHz digitally compensated SAW oscillator.
    Cowan WD; Slobodnik AR; Roberts GA; Silva JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):380-5. PubMed ID: 18290163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.
    Zhang W; Xu Z; Lours M; Boudot R; Kersalé Y; Luiten AN; Le Coq Y; Santarelli G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):900-8. PubMed ID: 21622045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-compensated aluminum nitride lamb wave resonators.
    Lin CM; Yen TT; Lai YJ; Felmetsger VV; Hopcroft MA; Kuypers JH; Pisano AP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):524-32. PubMed ID: 20211766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positioning FBAR technology in the frequency and timing domain.
    Ruby R; Small M; Bi F; Lee D; Callaghan L; Parker R; Ortiz S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):334-45. PubMed ID: 22481766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 1.48-mW low-phase-noise analog frequency modulator for wireless biotelemetry.
    Mohseni P; Najafi K
    IEEE Trans Biomed Eng; 2005 May; 52(5):938-43. PubMed ID: 15887544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1 GHz STW based oscillator with continuous temperature compensation.
    Taslakov MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):192-5. PubMed ID: 18244171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.