These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20211772)

  • 1. Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.
    Swallows MD; Campbell GK; Ludlow AD; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Nicholson TL; Ye J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):574-82. PubMed ID: 20211772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operating a (87)Sr optical lattice clock with high precision and at high density.
    Swallows M; Martin M; Bishof M; Benko C; Lin Y; Blatt S; Rey AM; Ye J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):416-25. PubMed ID: 22481774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.
    Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW
    Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of collisional shifts in a strongly interacting lattice clock.
    Swallows MD; Bishof M; Lin Y; Blatt S; Martin MJ; Rey AM; Ye J
    Science; 2011 Feb; 331(6020):1043-6. PubMed ID: 21292940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing interactions between ultracold fermions.
    Campbell GK; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Swallows MD; Nicholson TL; Fortier T; Oates CW; Diddams SA; Lemke ND; Naidon P; Julienne P; Ye J; Ludlow AD
    Science; 2009 Apr; 324(5925):360-3. PubMed ID: 19372424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks.
    Akamatsu D; Yasuda M; Inaba H; Hosaka K; Tanabe T; Onae A; Hong FL
    Opt Express; 2014 Apr; 22(7):7898-905. PubMed ID: 24718165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-1/2 optical lattice clock.
    Lemke ND; Ludlow AD; Barber ZW; Fortier TM; Diddams SA; Jiang Y; Jefferts SR; Heavner TP; Parker TE; Oates CW
    Phys Rev Lett; 2009 Aug; 103(6):063001. PubMed ID: 19792559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons.
    Lisdat Ch; Winfred JS; Middelmann T; Riehle F; Sterr U
    Phys Rev Lett; 2009 Aug; 103(9):090801. PubMed ID: 19792777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 87Sr lattice clock with inaccuracy below 10 -15.
    Boyd MM; Ludlow AD; Blatt S; Foreman SM; Ido T; Zelevinsky T; Ye J
    Phys Rev Lett; 2007 Feb; 98(8):083002. PubMed ID: 17359093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stark shift of the Cs clock transition frequency: a new experimental approach.
    Robyr JL; Knowles P; Weis A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):613-7. PubMed ID: 20211778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clock with 8×10^{-19} Systematic Uncertainty.
    Aeppli A; Kim K; Warfield W; Safronova MS; Ye J
    Phys Rev Lett; 2024 Jul; 133(2):023401. PubMed ID: 39073965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High accuracy correction of blackbody radiation shift in an optical lattice clock.
    Middelmann T; Falke S; Lisdat C; Sterr U
    Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.
    Akamatsu D; Kobayashi T; Hisai Y; Tanabe T; Hosaka K; Yasuda M; Hong FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1069-1075. PubMed ID: 29856725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision calculation of blackbody radiation shifts for optical frequency metrology.
    Safronova MS; Kozlov MG; Clark CW
    Phys Rev Lett; 2011 Sep; 107(14):143006. PubMed ID: 22107192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blackbody radiation shifts in optical atomic clocks.
    Safronova M; Kozlov M; Clark C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):439-47. PubMed ID: 22481777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate optical lattice clock with 87Sr atoms.
    Le Targat R; Baillard X; Fouché M; Brusch A; Tcherbakoff O; Rovera GD; Lemonde P
    Phys Rev Lett; 2006 Sep; 97(13):130801. PubMed ID: 17026019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty.
    Nicholson TL; Campbell SL; Hutson RB; Marti GE; Bloom BJ; McNally RL; Zhang W; Barrett MD; Safronova MS; Strouse GF; Tew WL; Ye J
    Nat Commun; 2015 Apr; 6():6896. PubMed ID: 25898253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty.
    Beloy K; Hinkley N; Phillips NB; Sherman JA; Schioppo M; Lehman J; Feldman A; Hanssen LM; Oates CW; Ludlow AD
    Phys Rev Lett; 2014 Dec; 113(26):260801. PubMed ID: 25615296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing the Dick effect in an optical lattice clock.
    Westergaard P; Lodewyck J; Lemonde P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):623-8. PubMed ID: 20211780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.