These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 20211778)

  • 1. Stark shift of the Cs clock transition frequency: a new experimental approach.
    Robyr JL; Knowles P; Weis A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):613-7. PubMed ID: 20211778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-accuracy measurement of the differential scalar polarizability of a 88Sr+ clock using the time-dilation effect.
    Dubé P; Madej AA; Tibbo M; Bernard JE
    Phys Rev Lett; 2014 May; 112(17):173002. PubMed ID: 24836242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-accuracy measurement of atomic polarizability in an optical lattice clock.
    Sherman JA; Lemke ND; Hinkley N; Pizzocaro M; Fox RW; Ludlow AD; Oates CW
    Phys Rev Lett; 2012 Apr; 108(15):153002. PubMed ID: 22587248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.
    Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW
    Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.
    Swallows MD; Campbell GK; Ludlow AD; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Nicholson TL; Ye J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):574-82. PubMed ID: 20211772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High accuracy correction of blackbody radiation shift in an optical lattice clock.
    Middelmann T; Falke S; Lisdat C; Sterr U
    Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stark shift of the A2Pi(1/2) state in 174YbF.
    Condylis PC; Hudson JJ; Tarbutt MR; Sauer BE; Hinds EA
    J Chem Phys; 2005 Dec; 123(23):231101. PubMed ID: 16392903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty.
    Beloy K; Hinkley N; Phillips NB; Sherman JA; Schioppo M; Lehman J; Feldman A; Hanssen LM; Oates CW; Ludlow AD
    Phys Rev Lett; 2014 Dec; 113(26):260801. PubMed ID: 25615296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks.
    Lodewyck J; Zawada M; Lorini L; Gurov M; Lemonde P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):411-5. PubMed ID: 22481773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-performance frequency stability compact CPT clock based on a Cs-Ne microcell.
    Boudot R; Liu X; Abbé P; Chutani R; Passilly N; Galliou S; Gorecki C; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2584-7. PubMed ID: 23192824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-1/2 optical lattice clock.
    Lemke ND; Ludlow AD; Barber ZW; Fortier TM; Diddams SA; Jiang Y; Jefferts SR; Heavner TP; Parker TE; Oates CW
    Phys Rev Lett; 2009 Aug; 103(6):063001. PubMed ID: 19792559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty.
    Huntemann N; Sanner C; Lipphardt B; Tamm C; Peik E
    Phys Rev Lett; 2016 Feb; 116(6):063001. PubMed ID: 26918984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. To simulate blackbody radiation frequency shift in cesium fountain frequency standard with CO2 laser.
    Chen J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1685-8. PubMed ID: 16964919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blackbody radiation shift assessment for a lutetium ion clock.
    Arnold KJ; Kaewuam R; Roy A; Tan TR; Barrett MD
    Nat Commun; 2018 Apr; 9(1):1650. PubMed ID: 29695720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-accuracy optical clock based on the octupole transition in 171Yb+.
    Huntemann N; Okhapkin M; Lipphardt B; Weyers S; Tamm C; Peik E
    Phys Rev Lett; 2012 Mar; 108(9):090801. PubMed ID: 22463621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the Spin-Dipolar Part of the Tensor Polarizability of ^{87}Rb.
    Dallal Y; Ozeri R
    Phys Rev Lett; 2015 Oct; 115(18):183001. PubMed ID: 26565464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations on continuous and pulsed interrogation for a CPT atomic clock.
    Castagna N; Boudot R; Guérandel S; De Clercq E; Dimarcq N; Clairon A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):246-53. PubMed ID: 19251511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift.
    Golovizin A; Fedorova E; Tregubov D; Sukachev D; Khabarova K; Sorokin V; Kolachevsky N
    Nat Commun; 2019 Apr; 10(1):1724. PubMed ID: 30979896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared dynamic polarizability of HD+ rovibrational states.
    Koelemeij JC
    Phys Chem Chem Phys; 2011 Nov; 13(42):18844-51. PubMed ID: 21755077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.