These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 20211780)
1. Minimizing the Dick effect in an optical lattice clock. Westergaard P; Lodewyck J; Lemonde P IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):623-8. PubMed ID: 20211780 [TBL] [Abstract][Full Text] [Related]
2. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock. Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849 [TBL] [Abstract][Full Text] [Related]
3. An optical lattice clock. Takamoto M; Hong FL; Higashi R; Katori H Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252 [TBL] [Abstract][Full Text] [Related]
4. Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy. Swallows MD; Campbell GK; Ludlow AD; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Nicholson TL; Ye J IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):574-82. PubMed ID: 20211772 [TBL] [Abstract][Full Text] [Related]
5. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator. Takamizawa A; Yanagimachi S; Tanabe T; Hagimoto K; Hirano I; Watabe K; Ikegami T; Hartnett JG IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1463-9. PubMed ID: 25167146 [TBL] [Abstract][Full Text] [Related]
6. Interrogation oscillator noise rejection in the comparison of atomic fountains. Bize S; Sortais Y; Lemonde P; Zhang S; Laurent P; Santarelli G; Salomon C; Clairon A IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(5):1253-5. PubMed ID: 18238668 [TBL] [Abstract][Full Text] [Related]
7. Entanglement on an optical atomic-clock transition. Pedrozo-Peñafiel E; Colombo S; Shu C; Adiyatullin AF; Li Z; Mendez E; Braverman B; Kawasaki A; Akamatsu D; Xiao Y; Vuletić V Nature; 2020 Dec; 588(7838):414-418. PubMed ID: 33328668 [TBL] [Abstract][Full Text] [Related]
8. Investigations on continuous and pulsed interrogation for a CPT atomic clock. Castagna N; Boudot R; Guérandel S; De Clercq E; Dimarcq N; Clairon A IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):246-53. PubMed ID: 19251511 [TBL] [Abstract][Full Text] [Related]
9. Operating a (87)Sr optical lattice clock with high precision and at high density. Swallows M; Martin M; Bishof M; Benko C; Lin Y; Blatt S; Rey AM; Ye J IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):416-25. PubMed ID: 22481774 [TBL] [Abstract][Full Text] [Related]
10. Improvement of the frequency stability below the Dick limit with a continuous atomic fountain clock. Devenoges L; Stefanov A; Joyet A; Thomann P; Di Domenico G IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Feb; 59(2):211-6. PubMed ID: 24626029 [TBL] [Abstract][Full Text] [Related]
11. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s. Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb. Hosaka K; Inaba H; Nakajima Y; Yasuda M; Kohno T; Onae A; Hong FL IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):606-12. PubMed ID: 20211777 [TBL] [Abstract][Full Text] [Related]
13. Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons. Lisdat Ch; Winfred JS; Middelmann T; Riehle F; Sterr U Phys Rev Lett; 2009 Aug; 103(9):090801. PubMed ID: 19792777 [TBL] [Abstract][Full Text] [Related]
14. Suppression of Dick Effect in Ramsey-CPT Atomic Clock by Interleaving Lock. Cheng P; Sun X; Zhang J; Wang L IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2195-2200. PubMed ID: 30106720 [TBL] [Abstract][Full Text] [Related]
15. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms. Akamatsu D; Kobayashi T; Hisai Y; Tanabe T; Hosaka K; Yasuda M; Hong FL IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1069-1075. PubMed ID: 29856725 [TBL] [Abstract][Full Text] [Related]
16. Suppression of collisional shifts in a strongly interacting lattice clock. Swallows MD; Bishof M; Lin Y; Blatt S; Martin MJ; Rey AM; Ye J Science; 2011 Feb; 331(6020):1043-6. PubMed ID: 21292940 [TBL] [Abstract][Full Text] [Related]
17. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions. Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267 [TBL] [Abstract][Full Text] [Related]
18. Improving the short-term frequency stability of a magnetic-state-selected cesium beam clock with optical detection. Liu C; Chen S; Chen Z; Li L; Xu S; Li Y; Wang J; Wang Y; Hou S; Zhang J; Dong R; Jiang X Rev Sci Instrum; 2021 Jul; 92(7):073302. PubMed ID: 34340434 [TBL] [Abstract][Full Text] [Related]
19. Realization of an ultrastable 578-nm laser for an Yb lattice clock. Pizzocaro M; Costanzo G; Godone A; Levi F; Mura A; Zoppi M; Calonico D IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):426-31. PubMed ID: 22481775 [TBL] [Abstract][Full Text] [Related]
20. Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion. Margolis HS; Barwood GP; Huang G; Klein HA; Lea SN; Szymaniec K; Gill P Science; 2004 Nov; 306(5700):1355-8. PubMed ID: 15550666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]