BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 20211838)

  • 1. Tuning and controlling gene expression noise in synthetic gene networks.
    Murphy KF; Adams RM; Wang X; Balázsi G; Collins JJ
    Nucleic Acids Res; 2010 May; 38(8):2712-26. PubMed ID: 20211838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic consequences of promoter-mediated transcriptional noise.
    Blake WJ; Balázsi G; Kohanski MA; Isaacs FJ; Murphy KF; Kuang Y; Cantor CR; Walt DR; Collins JJ
    Mol Cell; 2006 Dec; 24(6):853-65. PubMed ID: 17189188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic properties influencing the evolvability of gene expression.
    Landry CR; Lemos B; Rifkin SA; Dickinson WJ; Hartl DL
    Science; 2007 Jul; 317(5834):118-21. PubMed ID: 17525304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of stochasticity in eukaryotic gene expression.
    Raser JM; O'Shea EK
    Science; 2004 Jun; 304(5678):1811-4. PubMed ID: 15166317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of the activation domain of Ifh1, an activator of model TATA-less genes.
    Zhong P; Melcher K
    Biochem Biophys Res Commun; 2010 Jan; 392(1):77-82. PubMed ID: 20059977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast FACT complex has a role in transcriptional initiation.
    Biswas D; Yu Y; Prall M; Formosa T; Stillman DJ
    Mol Cell Biol; 2005 Jul; 25(14):5812-22. PubMed ID: 15987999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A synthetic gene circuit for measuring autoregulatory feedback control.
    Schikora-Tamarit MÀ; Toscano-Ochoa C; Domingo Espinós J; Espinar L; Carey LB
    Integr Biol (Camb); 2016 Apr; 8(4):546-55. PubMed ID: 26728081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further definition of the sequence and position requirements of the arginine control element that mediates repression and induction by arginine in Saccharomyces cerevisiae.
    Crabeel M; de Rijcke M; Seneca S; Heimberg H; Pfeiffer I; Matisova A
    Yeast; 1995 Nov; 11(14):1367-80. PubMed ID: 8585320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of TATA-containing genes and TATA-less genes in S. cerevisiae by network topologies and biological properties.
    Yang L; Wang J; Lv Y; Hao D; Zuo Y; Li X; Jiang W
    Genomics; 2014 Dec; 104(6 Pt B):562-71. PubMed ID: 25451177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2.
    Bird AJ; Blankman E; Stillman DJ; Eide DJ; Winge DR
    EMBO J; 2004 Mar; 23(5):1123-32. PubMed ID: 14976557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A TATA binding protein regulatory network that governs transcription complex assembly.
    Huisinga KL; Pugh BF
    Genome Biol; 2007; 8(4):R46. PubMed ID: 17407552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae.
    Watanabe K; Yabe M; Kasahara K; Kokubo T
    PLoS One; 2015; 10(6):e0129357. PubMed ID: 26046838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterize the relationship between essential and TATA-containing genes for S. cerevisiae by network topologies in the perturbation sensitivity network.
    Yang L; Wang S; Zhou M; Chen X; Zuo Y; Lv Y
    Genomics; 2016 Oct; 108(3-4):177-183. PubMed ID: 27613113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimization of transcriptional temporal noise and scale invariance in the yeast genome.
    Ferreira RC; Bosco F; Paiva PB; Briones MR
    Genet Mol Res; 2007 Jul; 6(2):397-414. PubMed ID: 17624863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise reduction facilitated by dosage compensation in gene networks.
    Peng W; Song R; Acar M
    Nat Commun; 2016 Oct; 7():12959. PubMed ID: 27694830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the proteasomal ATPases and activator monoubiquitylation in regulating Gal4 binding to promoters.
    Ferdous A; Sikder D; Gillette T; Nalley K; Kodadek T; Johnston SA
    Genes Dev; 2007 Jan; 21(1):112-23. PubMed ID: 17167105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental measurements and mathematical modeling of biological noise arising from transcriptional and translational regulation of basic synthetic gene circuits.
    Bandiera L; Pasini A; Pasotti L; Zucca S; Mazzini G; Magni P; Giordano E; Furini S
    J Theor Biol; 2016 Apr; 395():153-160. PubMed ID: 26874228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression.
    Nevozhay D; Adams RM; Murphy KF; Josic K; Balázsi G
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5123-8. PubMed ID: 19279212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise in eukaryotic gene expression.
    Blake WJ; KAErn M; Cantor CR; Collins JJ
    Nature; 2003 Apr; 422(6932):633-7. PubMed ID: 12687005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.