These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20211884)

  • 1. Review of theoretical modelling approaches of Rayleigh-Taylor instabilities and turbulent mixing.
    Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1809-28. PubMed ID: 20211884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing?
    Anisimov SI; Drake RP; Gauthier S; Meshkov EE; Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130266. PubMed ID: 24146014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities.
    Laney D; Bremer PT; Mascarenhas A; Miller P; Pascucci V
    IEEE Trans Vis Comput Graph; 2006; 12(5):1053-60. PubMed ID: 17080834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceleration and turbulence in Rayleigh-Taylor mixing.
    Sreenivasan KR; Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130267. PubMed ID: 24146015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II.
    Abarzhi SI; Gauthier S; Sreenivasan KR
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130268. PubMed ID: 24146016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal-Spatial Evolution of Kinetic and Thermal Energy Dissipation Rates in a Three-Dimensional Turbulent Rayleigh-Taylor Mixing Zone.
    Guo W; Guo X; Wei Y; Zhang Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach.
    Poujade O; Peybernes M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth rate of the turbulent magnetic Rayleigh-Taylor instability.
    Briard A; Gréa BJ; Nguyen F
    Phys Rev E; 2022 Dec; 106(6-2):065201. PubMed ID: 36671106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimensional effects in Rayleigh-Taylor mixing.
    Boffetta G; Musacchio S
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210084. PubMed ID: 35094565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing.
    Abarzhi SI; Bhowmick AK; Naveh A; Pandian A; Swisher NC; Stellingwerf RF; Arnett WD
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18184-18192. PubMed ID: 30478062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Zhou Y; Zimmerman GB; Burke EW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056303. PubMed ID: 12059699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh-Taylor instability.
    Wei Y; Li Y; Wang Z; Yang H; Zhu Z; Qian Y; Luo KH
    Phys Rev E; 2022 Jan; 105(1-2):015103. PubMed ID: 35193283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some peculiar features of hydrodynamic instability development.
    Meshkov E
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120288. PubMed ID: 24146012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of polymer additives on Rayleigh-Taylor turbulence.
    Boffetta G; Mazzino A; Musacchio S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056318. PubMed ID: 21728658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear diffusion model for Rayleigh-Taylor mixing.
    Boffetta G; De Lillo F; Musacchio S
    Phys Rev Lett; 2010 Jan; 104(3):034505. PubMed ID: 20366649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.