BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 20212164)

  • 1. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a.
    Sato M; Stryker MP
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5611-6. PubMed ID: 20212164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex.
    Kim H; Kunz PA; Mooney R; Philpot BD; Smith SL
    J Neurosci; 2016 Apr; 36(17):4888-94. PubMed ID: 27122043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ube3a is required for experience-dependent maturation of the neocortex.
    Yashiro K; Riday TT; Condon KH; Roberts AC; Bernardo DR; Prakash R; Weinberg RJ; Ehlers MD; Philpot BD
    Nat Neurosci; 2009 Jun; 12(6):777-83. PubMed ID: 19430469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology.
    Dindot SV; Antalffy BA; Bhattacharjee MB; Beaudet AL
    Hum Mol Genet; 2008 Jan; 17(1):111-8. PubMed ID: 17940072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome.
    Mardirossian S; Rampon C; Salvert D; Fort P; Sarda N
    Exp Neurol; 2009 Dec; 220(2):341-8. PubMed ID: 19782683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model.
    Silva-Santos S; van Woerden GM; Bruinsma CF; Mientjes E; Jolfaei MA; Distel B; Kushner SA; Elgersma Y
    J Clin Invest; 2015 May; 125(5):2069-76. PubMed ID: 25866966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke.
    Stodieck SK; Greifzu F; Goetze B; Schmidt KF; Löwel S
    Exp Gerontol; 2014 Dec; 60():1-11. PubMed ID: 25220148
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Wallace ML; van Woerden GM; Elgersma Y; Smith SL; Philpot BD
    J Neurophysiol; 2017 Jul; 118(1):634-646. PubMed ID: 28468997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome.
    Colas D; Wagstaff J; Fort P; Salvert D; Sarda N
    Neurobiol Dis; 2005 Nov; 20(2):471-8. PubMed ID: 15921919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex.
    Chen XJ; Rasch MJ; Chen G; Ye CQ; Wu S; Zhang XH
    J Neurosci; 2014 Feb; 34(8):2940-55. PubMed ID: 24553935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.
    Cang J; Kalatsky VA; Löwel S; Stryker MP
    Vis Neurosci; 2005; 22(5):685-91. PubMed ID: 16332279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homer1a Is Required for Establishment of Contralateral Bias and Maintenance of Ocular Dominance in Mouse Visual Cortex.
    Chokshi V; Druciak B; Worley PF; Lee HK
    J Neurosci; 2019 May; 39(20):3897-3905. PubMed ID: 30867257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.
    Jiang YH; Pan Y; Zhu L; Landa L; Yoo J; Spencer C; Lorenzo I; Brilliant M; Noebels J; Beaudet AL
    PLoS One; 2010 Aug; 5(8):e12278. PubMed ID: 20808828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Nociception in Angelman Syndrome Model Mice.
    McCoy ES; Taylor-Blake B; Aita M; Simon JM; Philpot BD; Zylka MJ
    J Neurosci; 2017 Oct; 37(42):10230-10239. PubMed ID: 28931574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a.
    Yamasaki K; Joh K; Ohta T; Masuzaki H; Ishimaru T; Mukai T; Niikawa N; Ogawa M; Wagstaff J; Kishino T
    Hum Mol Genet; 2003 Apr; 12(8):837-47. PubMed ID: 12668607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential therapeutic approaches for Angelman syndrome.
    Bi X; Sun J; Ji AX; Baudry M
    Expert Opin Ther Targets; 2016; 20(5):601-13. PubMed ID: 26558806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ube3a imprinting impairs circadian robustness in Angelman syndrome models.
    Shi SQ; Bichell TJ; Ihrie RA; Johnson CH
    Curr Biol; 2015 Mar; 25(5):537-45. PubMed ID: 25660546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice.
    Miura K; Kishino T; Li E; Webber H; Dikkes P; Holmes GL; Wagstaff J
    Neurobiol Dis; 2002 Mar; 9(2):149-59. PubMed ID: 11895368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenerational Transmission of Enhanced Ocular Dominance Plasticity from Enriched Mice to Their Non-enriched Offspring.
    Kalogeraki E; Yusifov R; Löwel S
    eNeuro; 2019; 6(1):. PubMed ID: 30805555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA.
    Meng L; Ward AJ; Chun S; Bennett CF; Beaudet AL; Rigo F
    Nature; 2015 Feb; 518(7539):409-12. PubMed ID: 25470045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.