These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20212165)

  • 1. Perceptual priming leads to reduction of gamma frequency oscillations.
    Moldakarimov S; Bazhenov M; Sejnowski TJ
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5640-5. PubMed ID: 20212165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retino-cortical stimulus frequency-dependent gamma coupling: evidence and functional implications of oscillatory potentials.
    Todorov MI; Kékesi KA; Borhegyi Z; Galambos R; Juhász G; Hudetz AG
    Physiol Rep; 2016 Oct; 4(19):. PubMed ID: 27702884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation sharpening can explain perceptual priming.
    Moldakarimov S; Bazhenov M; Sejnowski TJ
    Neural Comput; 2010 May; 22(5):1312-32. PubMed ID: 20028230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical dynamics during naturalistic sensory stimulations: experiments and models.
    Mazzoni A; Brunel N; Cavallari S; Logothetis NK; Panzeri S
    J Physiol Paris; 2011; 105(1-3):2-15. PubMed ID: 21907800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different types of signal coupling in the visual cortex related to neural mechanisms of associative processing and perception.
    Eckhorn R; Gail AM; Bruns A; Gabriel A; Al-Shaikhli B; Saam M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1039-52. PubMed ID: 15484881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex.
    Battaglia D; Hansel D
    PLoS Comput Biol; 2011 Oct; 7(10):e1002176. PubMed ID: 21998568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurofeedback training of gamma band oscillations improves perceptual processing.
    Salari N; Büchel C; Rose M
    Exp Brain Res; 2014 Oct; 232(10):3353-61. PubMed ID: 24992898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High frequency oscillations as a correlate of visual perception.
    Martinovic J; Busch NA
    Int J Psychophysiol; 2011 Jan; 79(1):32-8. PubMed ID: 20654659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1.
    Chalk M; Herrero JL; Gieselmann MA; Delicato LS; Gotthardt S; Thiele A
    Neuron; 2010 Apr; 66(1):114-25. PubMed ID: 20399733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decorrelated Input Dissociates Narrow Band γ Power and BOLD in Human Visual Cortex.
    Butler R; Bernier PM; Lefebvre J; Gilbert G; Whittingstall K
    J Neurosci; 2017 May; 37(22):5408-5418. PubMed ID: 28455370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus repetition modulates gamma-band synchronization in primate visual cortex.
    Brunet NM; Bosman CA; Vinck M; Roberts M; Oostenveld R; Desimone R; De Weerd P; Fries P
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3626-31. PubMed ID: 24554080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local field potentials indicate network state and account for neuronal response variability.
    Kelly RC; Smith MA; Kass RE; Lee TS
    J Comput Neurosci; 2010 Dec; 29(3):567-79. PubMed ID: 20094906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive dynamics in cortical responses to visual stimuli.
    Moldakarimov S; Rollenhagen JE; Olson CR; Chow CC
    J Neurophysiol; 2005 Nov; 94(5):3388-96. PubMed ID: 15944239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Gradient of Sharpening Effects by Perceptual Prior across the Human Cortical Hierarchy.
    González-García C; He BJ
    J Neurosci; 2021 Jan; 41(1):167-178. PubMed ID: 33208472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural origins of visual crowding as revealed by event-related potentials and oscillatory dynamics.
    Ronconi L; Bertoni S; Bellacosa Marotti R
    Cortex; 2016 Jun; 79():87-98. PubMed ID: 27088616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No consistent relationship between gamma power and peak frequency in macaque primary visual cortex.
    Jia X; Xing D; Kohn A
    J Neurosci; 2013 Jan; 33(1):17-25. PubMed ID: 23283318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-specific network oscillation and spatiotemporal receptive field in the visual cortex.
    Sun W; Dan Y
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17986-91. PubMed ID: 19805197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing.
    Sellers KK; Bennett DV; Fröhlich F
    Brain Res; 2015 Feb; 1598():31-45. PubMed ID: 25498982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.