BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20212327)

  • 1. Characterization of free radical spin adducts of the DIPPMPO using mass spectrometry and (31)P NMR.
    Zoia L; Argyropoulos DS
    Eur J Mass Spectrom (Chichester); 2010; 16(2):175-85. PubMed ID: 20212327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative 31P NMR detection of oxygen-centered and carbon-centered radical species.
    Argyropoulos DS; Li H; Gaspar AR; Smith K; Lucia LA; Rojas OJ
    Bioorg Med Chem; 2006 Jun; 14(12):4017-28. PubMed ID: 16504514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium-throughput ESR detection of superoxide production in undetached adherent cells using cyclic nitrone spin traps.
    Abbas K; Hardy M; Poulhès F; Karoui H; Tordo P; Ouari O; Peyrot F
    Free Radic Res; 2015; 49(9):1122-8. PubMed ID: 25968949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the radical mechanism of lipoxygenases using 31P NMR spin trapping.
    Zoia L; Perazzini R; Crestini C; Argyropoulos DS
    Bioorg Med Chem; 2011 May; 19(9):3022-8. PubMed ID: 21474321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using cyclodextrins to encapsulate oxygen-centered and carbon-centered radical adducts: the case of DMPO, PBN, and MNP spin traps.
    Spulber M; Schlick S
    J Phys Chem A; 2010 Jun; 114(21):6217-25. PubMed ID: 20462228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The line asymmetry of electron spin resonance spectra as a tool to determine the cis:trans ratio for spin-trapping adducts of chiral pyrrolines N-oxides: the mechanism of formation of hydroxyl radical adducts of EMPO, DEPMPO, and DIPPMPO in the ischemic-reperfused rat liver.
    Culcasi M; Rockenbauer A; Mercier A; Clément JL; Pietri S
    Free Radic Biol Med; 2006 May; 40(9):1524-38. PubMed ID: 16632113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel identification of a sulfur-centered, radical-derived 5,5-dimethyl-1-pyrroline N-oxide nitrone adduct formed from the oxidation of DTT by LC/ELISA, LC/electrospray ionization-MS, and LC/tandem MS.
    Guo Q; Gao G; Qian SY; Mason RP
    Chem Res Toxicol; 2004 Nov; 17(11):1481-90. PubMed ID: 15540946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-trapping derivatization of radical-derived EPR-silent adducts: application to free radical detection by HPLC/UV in chemical, biochemical, and biological systems and comparison with EPR spectroscopy.
    Michail K; Siraki AG
    Anal Chem; 2012 Aug; 84(15):6739-46. PubMed ID: 22724922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immuno-spin trapping: detection of protein-centered radicals.
    Ramirez DC; Mason RP
    Curr Protoc Toxicol; 2005 Jun; Chapter 17():Unit 17.7. PubMed ID: 23045116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps.
    Abbas K; Hardy M; Poulhès F; Karoui H; Tordo P; Ouari O; Peyrot F
    Free Radic Biol Med; 2014 Jun; 71():281-290. PubMed ID: 24662195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping.
    Wright PJ; English AM
    J Am Chem Soc; 2003 Jul; 125(28):8655-65. PubMed ID: 12848573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR spin trapping: detection of free radical reactions with a new fluorinated DMPO analog.
    Khramtsov VV; Reznikov VA; Berliner LJ; Litkin AK; Grigor'ev IA; Clanton TL
    Free Radic Biol Med; 2001 May; 30(10):1099-107. PubMed ID: 11369499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of allylic hydroperoxides and EPR spin-trapping studies on the formation of radicals in iron systems as potential initiators of the sensitizing pathway.
    Kao D; Chaintreau A; Lepoittevin JP; Giménez-Arnau E
    J Org Chem; 2011 Aug; 76(15):6188-200. PubMed ID: 21648947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR spin trapping: detection of free radical reactions using a phosphorus-containing nitrone spin trap.
    Khramtsov V; Berliner LJ; Clanton TL
    Magn Reson Med; 1999 Aug; 42(2):228-34. PubMed ID: 10440946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging.
    Towner RA; Smith N
    Antioxid Redox Signal; 2018 May; 28(15):1404-1415. PubMed ID: 29084431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin trapping experiments with different carbamoyl-substituted EMPO derivatives.
    Stolze K; Rohr-Udilova N; Hofinger A; Rosenau T
    Bioorg Med Chem; 2008 Sep; 16(17):8082-9. PubMed ID: 18706818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping.
    Mason RP
    Free Radic Biol Med; 2004 May; 36(10):1214-23. PubMed ID: 15110386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of free radicals by spin trapping with DEPMPO and MCPIO using tandem mass spectrometry.
    Reis A; Domingues MR; Oliveira MM; Domingues P
    Eur J Mass Spectrom (Chichester); 2009; 15(6):689-703. PubMed ID: 19940335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin trapping of superoxide, alkyl- and lipid-derived radicals with derivatives of the spin trap EPPN.
    Stolze K; Udilova N; Rosenau T; Hofinger A; Nohl H
    Biochem Pharmacol; 2003 Nov; 66(9):1717-26. PubMed ID: 14563482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria-targeted spin traps: synthesis, superoxide spin trapping, and mitochondrial uptake.
    Hardy M; Poulhés F; Rizzato E; Rockenbauer A; Banaszak K; Karoui H; Lopez M; Zielonka J; Vasquez-Vivar J; Sethumadhavan S; Kalyanaraman B; Tordo P; Ouari O
    Chem Res Toxicol; 2014 Jul; 27(7):1155-65. PubMed ID: 24890552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.