These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 20212545)

  • 1. Coal particle combustion studied by holography.
    Trolinger JD; Heap MP
    Appl Opt; 1979 Jun; 18(11):1757-62. PubMed ID: 20212545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies.
    Adeosun A; Huang Q; Li T; Gopan A; Wang X; Li S; Axelbaum RL
    Rev Sci Instrum; 2018 Feb; 89(2):025109. PubMed ID: 29495807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-line recording and off-axis viewing technique for holographic particle velocimetry.
    Meng H; Hussain F
    Appl Opt; 1995 Apr; 34(11):1827-40. PubMed ID: 21037728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation.
    Yin C; Kaer SK; Rosendahl L; Hvid SL
    Bioresour Technol; 2010 Jun; 101(11):4169-78. PubMed ID: 20117929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coal powder measurement by digital holography with expanded measurement area.
    Wu Y; Wu X; Wang Z; Chen L; Cen K
    Appl Opt; 2011 Dec; 50(34):H22-9. PubMed ID: 22193011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle characteristics responsible for effects on human lung epithelial cells.
    Aust AE; Ball JC; Hu AA; Lighty JS; Smith KR; Straccia AM; Veranth JM; Young WC
    Res Rep Health Eff Inst; 2002 Dec; (110):1-65; discussion 67-76. PubMed ID: 12578113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhalation health effects of fine particles from the co-combustion of coal and refuse derived fuel.
    Fernandez A; Wendt JO; Wolski N; Hein KR; Wang S; Witten ML
    Chemosphere; 2003 Jun; 51(10):1129-37. PubMed ID: 12718979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on flames propagating through zirconium particle clouds.
    Yin Y; Sun J; Ding Y; Guo S; He X
    J Hazard Mater; 2009 Oct; 170(1):340-4. PubMed ID: 19477589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10.
    Xie R; Seip HM; Wibetoe G; Nori S; McLeod CW
    Sci Total Environ; 2006 Nov; 370(2-3):409-15. PubMed ID: 16899282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Jet Velocity on the Formation of Moderate or Intense Low-Oxygen Dilution Combustion of Pulverized Coal.
    Huang W; Wu Y; Feng L; Zhang H
    ACS Omega; 2023 Apr; 8(13):11999-12010. PubMed ID: 37033790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium and potassium released from burning particles of brown coal and pine wood in a laminar premixed methane flame using quantitative laser-induced breakdown spectroscopy.
    Hsu LJ; Alwahabi ZT; Nathan GJ; Li Y; Li ZS; Aldén M
    Appl Spectrosc; 2011 Jun; 65(6):684-91. PubMed ID: 21639991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of velocity and number density profiles of particles across the flame propagation through a micro-iron dust cloud.
    Bidabadi M; Haghiri A; Rahbari A
    J Hazard Mater; 2010 Apr; 176(1-3):146-53. PubMed ID: 19959287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on Radiation Spectrum of Pulverized Coal Combustion Flame].
    Gui XY; Alliot A; Yang B; Zhou W; Ping L; Cai XS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3492-6. PubMed ID: 30198651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal.
    Smith KR; Veranth JM; Lighty JS; Aust AE
    Chem Res Toxicol; 1998 Dec; 11(12):1494-500. PubMed ID: 9860493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-wavelength laser transmissometer for measurements of the mean size and concentration of coal ash droplets in combustion flows.
    Ariessohn PC; Self SA; Eustis RH
    Appl Opt; 1980 Nov; 19(22):3775-81. PubMed ID: 20234695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerosol generation to simulate specific industrial fine particle effluents.
    Carroz JW; Odencrantz FK; Finnegan WG; Drehmel DC
    Am Ind Hyg Assoc J; 1980 Feb; 41(2):77-84. PubMed ID: 15508480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion.
    Wei F; Zhang JY; Zheng CG
    J Environ Sci (China); 2005; 17(2):335-9. PubMed ID: 16295917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India.
    Gupta AK; Karar K; Srivastava A
    J Hazard Mater; 2007 Apr; 142(1-2):279-87. PubMed ID: 16987605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes.
    Barbosa R; Lapa N; Boavida D; Lopes H; Gulyurtlu I; Mendes B
    J Hazard Mater; 2009 Oct; 170(2-3):902-9. PubMed ID: 19515486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional combined pyrometric sizing and velocimetry of combusting coal particles. II: Pyrometry.
    Toth P; Draper T; Palotas AB; Ring TA; Eddings EG
    Appl Opt; 2015 May; 54(15):4916-26. PubMed ID: 26192531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.