These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20212673)

  • 1. Holographic correction of both chromatic and spherical aberrations of single glass lenses.
    Madjidi-Zolbanine H; Froehly C
    Appl Opt; 1979 Jul; 18(14):2385-93. PubMed ID: 20212673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher order aberrations in holographic lenses.
    Mehta PC; Rao KS; Hradaynath R
    Appl Opt; 1982 Dec; 21(24):4553-8. PubMed ID: 20401116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Third-order aberrations for holograms and holographic lenses recorded on quadrics of revolution.
    Masajada J; Nowak J
    Appl Opt; 1991 May; 30(14):1791-5. PubMed ID: 20700360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatic aberration matching of the polychromatic optical transfer function.
    Takeda M
    Appl Opt; 1981 Feb; 20(4):684-7. PubMed ID: 20309178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking the spherical and chromatic aberration barrier in transmission electron microscopy.
    Freitag B; Kujawa S; Mul PM; Ringnalda J; Tiemeijer PC
    Ultramicroscopy; 2005 Feb; 102(3):209-14. PubMed ID: 15639351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration.
    Weeber HA; Piers PA
    J Refract Surg; 2012 Jan; 28(1):48-52. PubMed ID: 22074466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and correction of spherical aberration due to glass substrate in the design and fabrication of Fresnel zone lenses.
    Vijayakumar A; Bhattacharya S
    Appl Opt; 2013 Aug; 52(24):5932-40. PubMed ID: 24084994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive aberration correction using a triode hyperbolic electron mirror.
    Fitzgerald JP; Word RC; Könenkamp R
    Ultramicroscopy; 2011; 111(9-10):1495-503. PubMed ID: 21930022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Holographic spherical gratings: a new family of quasi-stigmatic designs for the Rowland-circle mounting.
    Grange R
    Appl Opt; 1993 Sep; 32(25):4875-80. PubMed ID: 20830162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconical aplanatic ovoid singlet lenses.
    Silva-Lora A; Torres R
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jul; 37(7):1155-1165. PubMed ID: 32609676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberration correction of zoom lenses using evolutionary programming.
    Pal S
    Appl Opt; 2013 Aug; 52(23):5724-32. PubMed ID: 23938425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holographic diffraction gratings generated by aberrated wave fronts: application to a high-resolution far-ultraviolet spectrograph.
    Grange R; Laget M
    Appl Opt; 1991 Sep; 30(25):3598-603. PubMed ID: 20706431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printable Nanophotonic Devices via Holographic Laser Ablation.
    Zhao Q; Yetisen AK; Sabouri A; Yun SH; Butt H
    ACS Nano; 2015 Sep; 9(9):9062-9. PubMed ID: 26301907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Third-generation Rowland holographic mounting.
    Duban M
    Appl Opt; 1991 Oct; 30(28):4019-25. PubMed ID: 20706498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism.
    Marcos S; Rosales P; Llorente L; Barbero S; Jiménez-Alfaro I
    Vision Res; 2008 Jan; 48(1):70-9. PubMed ID: 18054373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correcting spherical aberrations induced by an unknown medium through determination of its refractive index and thickness.
    Iwaniuk D; Rastogi P; Hack E
    Opt Express; 2011 Sep; 19(20):19407-14. PubMed ID: 21996881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-based analysis of hologram imagery and aberrations. I. Hologram types and their nonchromatic aberrations.
    Latta JN
    Appl Opt; 1971 Mar; 10(3):599-608. PubMed ID: 20094496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatic compensation of programmable Fresnel lenses.
    Millán MS; Otón J; Pérez-Cabré E
    Opt Express; 2006 Jun; 14(13):6226-42. PubMed ID: 19516795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holographic system for copying holograms by using partially coherent light.
    Pascual I; Beléndez A; Fimia A
    Appl Opt; 1992 Jun; 31(17):3312-9. PubMed ID: 20725285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensation of chromatic errors in high na molded objective lenses.
    Milster TD; Gerber RE
    Appl Opt; 1995 Dec; 34(34):8079-80. PubMed ID: 21068919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.