These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20213168)

  • 1. Accurate detection of on-state quantum dot and biomolecules in a microfluidic flow with single-molecule two-color coincidence detection.
    Zhang CY; Yang K
    Anal Bioanal Chem; 2010 May; 397(2):703-8. PubMed ID: 20213168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows.
    Zhang CY; Johnson LW
    Anal Chem; 2006 Aug; 78(15):5532-7. PubMed ID: 16878892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Chen L; Algar WR; Tavares AJ; Krull UJ
    Anal Bioanal Chem; 2011 Jan; 399(1):133-41. PubMed ID: 20978748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogenous rapid detection of nucleic acids using two-color quantum dots.
    Zhang CY; Johnson LW
    Analyst; 2006 Apr; 131(4):484-8. PubMed ID: 16568163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blinking effect and the use of quantum dots in single molecule spectroscopy.
    Rombach-Riegraf V; Oswald P; Bienert R; Petersen J; Domingo MP; Pardo J; Gräber P; Galvez EM
    Biochem Biophys Res Commun; 2013 Jan; 430(1):260-4. PubMed ID: 23159631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The detection of p53 gene via fluorescence quenching of quantum dot in microfluidic chip.
    Yoo JH; Yoo IS; Yoon WJ; Kim JS
    J Nanosci Nanotechnol; 2012 May; 12(5):4109-14. PubMed ID: 22852354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single quantum dot-based nanosensor for multiple DNA detection.
    Zhang CY; Hu J
    Anal Chem; 2010 Mar; 82(5):1921-7. PubMed ID: 20121246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform.
    Long F; Gu C; Gu AZ; Shi H
    Anal Chem; 2012 Apr; 84(8):3646-53. PubMed ID: 22455400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules.
    Algar WR; Krull UJ
    Anal Bioanal Chem; 2008 Jul; 391(5):1609-18. PubMed ID: 17987281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosensing with quantum dots: a microfluidic approach.
    Vannoy CH; Tavares AJ; Noor MO; Uddayasankar U; Krull UJ
    Sensors (Basel); 2011; 11(10):9732-63. PubMed ID: 22163723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel.
    Stavis SM; Edel JB; Samiee KT; Craighead HG
    Lab Chip; 2005 Mar; 5(3):337-43. PubMed ID: 15726210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging.
    Petryayeva E; Algar WR; Medintz IL
    Appl Spectrosc; 2013 Mar; 67(3):215-52. PubMed ID: 23452487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcontact printing of quantum dot bioconjugate arrays for localized capture and detection of biomolecules.
    Pattani VP; Li C; Desai TA; Vu TQ
    Biomed Microdevices; 2008 Jun; 10(3):367-74. PubMed ID: 18183489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous point mutation detection by quantum dot-mediated two-color fluorescence coincidence analysis.
    Yeh HC; Ho YP; Shih IeM; Wang TH
    Nucleic Acids Res; 2006 Mar; 34(5):e35. PubMed ID: 16517937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in single quantum dot-based nanosensors.
    Hu J; Wang ZY; Li CC; Zhang CY
    Chem Commun (Camb); 2017 Dec; 53(100):13284-13295. PubMed ID: 29171858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adapting fluorescence resonance energy transfer with quantum dot donors for solid-phase hybridization assays in microtiter plate format.
    Petryayeva E; Algar WR; Krull UJ
    Langmuir; 2013 Jan; 29(3):977-87. PubMed ID: 23298406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the effect of physiological cations on quantum dots by using single-particle detection.
    Zhang CY; Li D
    Analyst; 2010 Sep; 135(9):2355-9. PubMed ID: 20603686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A common mechanism underlies the dark fraction formation and fluorescence blinking of quantum dots.
    Durisic N; Wiseman PW; Grütter P; Heyes CD
    ACS Nano; 2009 May; 3(5):1167-75. PubMed ID: 19385605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.