These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20213232)

  • 21. China's water crisis needs more than words.
    Yu C
    Nature; 2011 Feb; 470(7334):307. PubMed ID: 21331001
    [No Abstract]   [Full Text] [Related]  

  • 22. Modeling phosphorus in the Lake Allatoona watershed using SWAT: I. Developing phosphorus parameter values.
    Radcliffe DE; Lin Z; Risse LM; Romeis JJ; Jackson CR
    J Environ Qual; 2009; 38(1):111-20. PubMed ID: 19141800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.
    Liu Y; Bralts VF; Engel BA
    Sci Total Environ; 2015 Apr; 511():298-308. PubMed ID: 25553544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.
    Sommerlot AR; Nejadhashemi AP; Woznicki SA; Giri S; Prohaska MD
    J Environ Manage; 2013 Sep; 127():228-36. PubMed ID: 23764473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating causes of trends in long-term dissolved reactive phosphorus loads to Lake Erie.
    Daloğlu I; Cho KH; Scavia D
    Environ Sci Technol; 2012 Oct; 46(19):10660-6. PubMed ID: 22962949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the response of eutrophication control measures in a Swedish lake.
    Pers BC
    Ambio; 2005 Nov; 34(7):552-8. PubMed ID: 16435745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: supporting policy making in the Green Water Credits program of Kenya.
    Hunink JE; Droogers P; Kauffman S; Mwaniki BM; Bouma J
    J Environ Manage; 2012 Nov; 111():187-94. PubMed ID: 22922092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic phosphorus budget for lake-watershed ecosystems.
    Liu Y; Guo HC; Wang LJ; Dai YL; Zhang XM; Li ZH; He B
    J Environ Sci (China); 2006; 18(3):596-603. PubMed ID: 17294664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SWAT model application for evaluating agricultural conservation practice effectiveness in reducing phosphorous loss from the Western Lake Erie Basin.
    Yuan Y; Koropeckyj-Cox L
    J Environ Manage; 2022 Jan; 302(Pt A):114000. PubMed ID: 34872174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of agricultural conservation practices on N loads in the Mississippi-atchafalaya river basin.
    Santhi C; Arnold JG; White M; Di Luzio M; Kannan N; Norfleet L; Atwood J; Kellogg R; Wang X; Williams JR; Gerik T
    J Environ Qual; 2014 Nov; 43(6):1903-15. PubMed ID: 25602207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lake Constance--a model for integrated lake restoration with international cooperation.
    Müller H
    Water Sci Technol; 2002; 46(6-7):93-8. PubMed ID: 12380979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Baseline requirements can hinder trades in water quality trading programs: Evidence from the Conestoga watershed.
    Ghosh G; Ribaudo M; Shortle J
    J Environ Manage; 2011 Aug; 92(8):2076-84. PubMed ID: 21507559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing the relation of USDA conservation expenditures to suspended sediment reductions in an Iowa watershed.
    Villarini G; Schilling KE; Jones CS
    J Environ Manage; 2016 Sep; 180():375-83. PubMed ID: 27262032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the impacts of sustainable land management practices on water quality in an agricultural catchment in Lower Austria using SWAT.
    Musyoka FK; Strauss P; Zhao G; Strohmeier S; Mutua BM; Klik A
    Environ Monit Assess; 2023 Mar; 195(4):512. PubMed ID: 36964829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Adsorbed non-point source pollution load of Jialing River basin].
    Long TY; Li JC; Liu LM
    Huan Jing Ke Xue; 2008 Jul; 29(7):1811-7. PubMed ID: 18828359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water and phosphorus mass balance of Lake Tegel and Schlachtensee - a modelling approach.
    Schauser I; Chorus I
    Water Res; 2009 Apr; 43(6):1788-800. PubMed ID: 19232667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water quality and the grazing animal.
    Hubbard RK; Newton GL; Hill GM
    J Anim Sci; 2004; 82 E-Suppl():E255-263. PubMed ID: 15471806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative evaluation of the continuous and event-based modelling approaches for identifying critical source areas for sediment and phosphorus losses.
    Shrestha NK; Rudra RP; Daggupati P; Goel PK; Shukla R
    J Environ Manage; 2021 Jan; 277():111427. PubMed ID: 33069154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of a turfgrass sod best management practice on water quality in a suburban watershed.
    Richards CE; Munster CL; Vietor DM; Arnold JG; White R
    J Environ Manage; 2008 Jan; 86(1):229-45. PubMed ID: 17298864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.
    Udawatta RP; Garrett HE; Kallenbach R
    J Environ Qual; 2011; 40(3):800-6. PubMed ID: 21546665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.