These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20213627)

  • 1. Biocompatibility of synthetic poly(ester urethane)/polyhedral oligomeric silsesquioxane matrices with embryonic stem cell proliferation and differentiation.
    Guo YL; Wang W; Otaigbe JU
    J Tissue Eng Regen Med; 2010 Oct; 4(7):553-64. PubMed ID: 20213627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.
    Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM
    Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications.
    Huang L; Tan J; Li W; Zhou L; Liu Z; Luo B; Lu L; Zhou C
    J Mech Behav Biomed Mater; 2019 Feb; 90():604-614. PubMed ID: 30500698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro small intestinal epithelial cell growth on a nanocomposite polycaprolactone scaffold.
    Gupta A; Vara DS; Punshon G; Sales KM; Winslet MC; Seifalian AM
    Biotechnol Appl Biochem; 2009 Dec; 54(4):221-9. PubMed ID: 19860739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new biodegradable nanocomposite based on polyhedral oligomeric silsesquioxane nanocages: cytocompatibility and investigation into electrohydrodynamic jet fabrication techniques for tissue-engineered scaffolds.
    Raghunath J; Zhang H; Edirisinghe MJ; Darbyshire A; Butler PE; Seifalian AM
    Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):1-8. PubMed ID: 18402554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering.
    Camarero-Espinosa S; Calore A; Wilbers A; Harings J; Moroni L
    Acta Biomater; 2020 Jan; 102():192-204. PubMed ID: 31778830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying three-dimensional scaffolds from novel nanocomposite materials using dissolvable porogen particles for use in liver tissue engineering.
    Adwan H; Fuller B; Seldon C; Davidson B; Seifalian A
    J Biomater Appl; 2013 Aug; 28(2):250-61. PubMed ID: 22532408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications.
    Yildirimer L; Buanz A; Gaisford S; Malins EL; Remzi Becer C; Moiemen N; Reynolds GM; Seifalian AM
    Sci Rep; 2015 Oct; 5():15040. PubMed ID: 26463421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM
    J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun poly(ester-Urethane)- and poly(ester-Urethane-Urea) fleeces as promising tissue engineering scaffolds for adipose-derived stem cells.
    Gugerell A; Kober J; Laube T; Walter T; Nürnberger S; Grönniger E; Brönneke S; Wyrwa R; Schnabelrauch M; Keck M
    PLoS One; 2014; 9(3):e90676. PubMed ID: 24594923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells.
    Kiziltay A; Marcos-Fernandez A; San Roman J; Sousa RA; Reis RL; Hasirci V; Hasirci N
    J Tissue Eng Regen Med; 2015 Aug; 9(8):930-42. PubMed ID: 24376070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry.
    Oseni AO; Butler PE; Seifalian AM
    J Tissue Eng Regen Med; 2015 Nov; 9(11):E27-38. PubMed ID: 23576328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold.
    Crowley C; Klanrit P; Butler CR; Varanou A; Platé M; Hynds RE; Chambers RC; Seifalian AM; Birchall MA; Janes SM
    Biomaterials; 2016 Mar; 83():283-93. PubMed ID: 26790147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospinning of poly(lactic acid)/polyhedral oligomeric silsesquioxane nanocomposites and their potential in chondrogenic tissue regeneration.
    Gomez-Sanchez C; Kowalczyk T; Ruiz De Eguino G; Lopez-Arraiza A; Infante A; Rodriguez CI; Kowalewski TA; Sarrionandia M; Aurrekoetxea J
    J Biomater Sci Polym Ed; 2014; 25(8):802-25. PubMed ID: 24754323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ endothelialization potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft.
    de Mel A; Punshon G; Ramesh B; Sarkar S; Darbyshire A; Hamilton G; Seifalian AM
    Biomed Mater Eng; 2009; 19(4-5):317-31. PubMed ID: 20042799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel heart valve prosthesis with self-endothelialization potential made of modified polyhedral oligomeric silsesquioxane-nanocomposite material.
    Ghanbari H; Radenkovic D; Marashi SM; Parsno S; Roohpour N; Burriesci G; Seifalian AM
    Biointerphases; 2016 Jun; 11(2):029801. PubMed ID: 26763768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and development of biodegradable POSS-PCL-Zeolite (β) nano-scaffold for potential applications in bone regeneration.
    Bagheri L; Jafari-Gharabaghlou D; Valizadeh H; Barzegari A; Zarghami N
    J Biomater Sci Polym Ed; 2023 Aug; 34(11):1559-1578. PubMed ID: 36680788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silsesquioxane polymer as a potential scaffold for laryngeal reconstruction.
    Mehrban N; Bowen J; Tait A; Darbyshire A; Virasami AK; Lowdell MW; Birchall MA
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():565-574. PubMed ID: 30184783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locust bean gum as an alternative polymeric coating for embryonic stem cell culture.
    Perestrelo AR; Grenha A; Rosa da Costa AM; Belo JA
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():336-44. PubMed ID: 24857501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive Hybrid of Polyhedral Oligomeric Silsesquioxane (POSS) and Sulfur as a Building Block for Self-Healing Materials.
    Lin HK; Liu YL
    Macromol Rapid Commun; 2017 May; 38(10):. PubMed ID: 28370775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.