These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 20213816)
1. Enhanced angiogenesis of modified porcine small intestinal submucosa with hyaluronic acid-poly(lactide-co-glycolide) nanoparticles: from fabrication to preclinical validation. Mondalek FG; Ashley RA; Roth CC; Kibar Y; Shakir N; Ihnat MA; Fung KM; Grady BP; Kropp BP; Lin HK J Biomed Mater Res A; 2010 Sep; 94(3):712-9. PubMed ID: 20213816 [TBL] [Abstract][Full Text] [Related]
2. Bladder regeneration in a canine model using hyaluronic acid-poly(lactic-co-glycolic-acid) nanoparticle modified porcine small intestinal submucosa. Roth CC; Mondalek FG; Kibar Y; Ashley RA; Bell CH; Califano JA; Madihally SV; Frimberger D; Lin HK; Kropp BP BJU Int; 2011 Jul; 108(1):148-55. PubMed ID: 20942834 [TBL] [Abstract][Full Text] [Related]
3. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Yadav AK; Mishra P; Mishra AK; Mishra P; Jain S; Agrawal GP Nanomedicine; 2007 Dec; 3(4):246-57. PubMed ID: 18068091 [TBL] [Abstract][Full Text] [Related]
4. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications. Park JK; Yeom J; Oh EJ; Reddy M; Kim JY; Cho DW; Lim HP; Kim NS; Park SW; Shin HI; Yang DJ; Park KB; Hahn SK Acta Biomater; 2009 Nov; 5(9):3394-403. PubMed ID: 19477304 [TBL] [Abstract][Full Text] [Related]
5. Development of poly(lactide-co-glycolide) scaffold-impregnated small intestinal submucosa with pores that stimulate extracellular matrix production in disc regeneration. Kim SH; Song JE; Lee D; Khang G J Tissue Eng Regen Med; 2014 Apr; 8(4):279-90. PubMed ID: 22689349 [TBL] [Abstract][Full Text] [Related]
6. Assessment of angiogenic properties of biomaterials using the chicken embryo chorioallantoic membrane assay. Azzarello J; Ihnat MA; Kropp BP; Warnke LA; Lin HK Biomed Mater; 2007 Jun; 2(2):55-61. PubMed ID: 18458436 [TBL] [Abstract][Full Text] [Related]
7. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil. Yadav AK; Agarwal A; Rai G; Mishra P; Jain S; Mishra AK; Agrawal H; Agrawal GP Drug Deliv; 2010 Nov; 17(8):561-72. PubMed ID: 20738221 [TBL] [Abstract][Full Text] [Related]
8. An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Kim MS; Ahn HH; Shin YN; Cho MH; Khang G; Lee HB Biomaterials; 2007 Dec; 28(34):5137-43. PubMed ID: 17764737 [TBL] [Abstract][Full Text] [Related]
9. Surface coverage of didecyl dimethylammonium bromide on poly(lactide-co-glycolide) nanoparticles. Kuo YC; Yu HW Colloids Surf B Biointerfaces; 2011 May; 84(1):253-8. PubMed ID: 21288700 [TBL] [Abstract][Full Text] [Related]
10. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers. Fan MR; Gong M; Da LC; Bai L; Li XQ; Chen KF; Li-Ling J; Yang ZM; Xie HQ Biomed Mater; 2014 Feb; 9(1):015012. PubMed ID: 24457267 [TBL] [Abstract][Full Text] [Related]
11. Loading efficiency and surface conductance of heparin-modified poly(lactide-co-glycolide) nanoparticles. Kuo YC; Shih KH Colloids Surf B Biointerfaces; 2009 Jul; 71(2):282-7. PubMed ID: 19329287 [TBL] [Abstract][Full Text] [Related]
12. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Lee H; Ahn CH; Park TG Macromol Biosci; 2009 Apr; 9(4):336-42. PubMed ID: 19006195 [TBL] [Abstract][Full Text] [Related]
13. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. Zhang Y; Frimberger D; Cheng EY; Lin HK; Kropp BP BJU Int; 2006 Nov; 98(5):1100-5. PubMed ID: 17034611 [TBL] [Abstract][Full Text] [Related]
14. Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. Loai Y; Yeger H; Coz C; Antoon R; Islam SS; Moore K; Farhat WA J Biomed Mater Res A; 2010 Sep; 94(4):1205-15. PubMed ID: 20694987 [TBL] [Abstract][Full Text] [Related]
15. Use of porcine small intestinal submucosa in bladder augmentation in rabbit: long-term histological outcome. Ayyildiz A; Akgül KT; Huri E; Nuhoğlu B; Kiliçoğlu B; Ustün H; Gürdal M; Germiyanoğlu C ANZ J Surg; 2008; 78(1-2):82-6. PubMed ID: 18199213 [TBL] [Abstract][Full Text] [Related]
16. The incorporation of poly(lactic-co-glycolic) acid nanoparticles into porcine small intestinal submucosa biomaterials. Mondalek FG; Lawrence BJ; Kropp BP; Grady BP; Fung KM; Madihally SV; Lin HK Biomaterials; 2008 Mar; 29(9):1159-66. PubMed ID: 18076986 [TBL] [Abstract][Full Text] [Related]
17. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
18. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. Ghotbi Z; Haddadi A; Hamdy S; Hung RW; Samuel J; Lavasanifar A J Drug Target; 2011 May; 19(4):281-92. PubMed ID: 20590403 [TBL] [Abstract][Full Text] [Related]
19. Regional variations in small intestinal submucosa evoke differences in inflammation with subsequent impact on tissue regeneration in the rat bladder augmentation model. Ashley RA; Roth CC; Palmer BW; Kibar Y; Routh JC; Fung KM; Frimberger D; Lin HK; Kropp BP BJU Int; 2010 May; 105(10):1462-8. PubMed ID: 19863527 [TBL] [Abstract][Full Text] [Related]
20. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Cui Y; Liu Y; Cui Y; Jing X; Zhang P; Chen X Acta Biomater; 2009 Sep; 5(7):2680-92. PubMed ID: 19376759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]