These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20214470)

  • 1. Microfluidic culture models of tumor angiogenesis.
    Stroock AD; Fischbach C
    Tissue Eng Part A; 2010 Jul; 16(7):2143-6. PubMed ID: 20214470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in microfluidic cell culture systems for studying angiogenesis.
    Young EW
    J Lab Autom; 2013 Dec; 18(6):427-36. PubMed ID: 23832929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems.
    Kuzmic N; Moore T; Devadas D; Young EWK
    Biomech Model Mechanobiol; 2019 Jun; 18(3):717-731. PubMed ID: 30604299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-engineered three-dimensional tumor models to study tumor angiogenesis.
    Verbridge SS; Chandler EM; Fischbach C
    Tissue Eng Part A; 2010 Jul; 16(7):2147-52. PubMed ID: 20214471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogels to model 3D in vitro microenvironment of tumor vascularization.
    Song HH; Park KM; Gerecht S
    Adv Drug Deliv Rev; 2014 Dec; 79-80():19-29. PubMed ID: 24969477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascularized tumor-on-chip microplatforms for the studies of neovasculature as hope for more effective cancer treatments.
    Konopka J; Żuchowska A; Jastrzębska E
    Biosens Bioelectron; 2024 Apr; 249():115986. PubMed ID: 38194813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic models of vascular functions.
    Wong KH; Chan JM; Kamm RD; Tien J
    Annu Rev Biomed Eng; 2012; 14():205-30. PubMed ID: 22540941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Microfluidic Tri-Culture Model of the Bone Marrow Microenvironment for Study of Acute Lymphoblastic Leukemia.
    Bruce A; Evans R; Mezan R; Shi L; Moses BS; Martin KH; Gibson LF; Yang Y
    PLoS One; 2015; 10(10):e0140506. PubMed ID: 26488876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic approaches to the study of angiogenesis and the microcirculation.
    Akbari E; Spychalski GB; Song JW
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28182312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of diffusive- and convective-transport mediated microtumor growth in a controlled microchamber.
    Hsu YH; Liu WW; Wu TH; Lee CJ; Chen YH; Li PC
    Biomed Microdevices; 2019 Jan; 21(1):7. PubMed ID: 30607550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiogenic Sprouting Dynamics Mediated by Endothelial-Fibroblast Interactions in Microfluidic Systems.
    Walji N; Kheiri S; Young EWK
    Adv Biol (Weinh); 2021 Nov; 5(11):e2101080. PubMed ID: 34655165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a Vascularized Hypoxic Tumor Model for Therapeutic Assessment.
    Ando Y; Oh JM; Zhao W; Tran M; Shen K
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic 3D cell culture: from tools to tissue models.
    van Duinen V; Trietsch SJ; Joore J; Vulto P; Hankemeier T
    Curr Opin Biotechnol; 2015 Dec; 35():118-26. PubMed ID: 26094109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New dimensions in vascular engineering: opportunities for cancer biology.
    Rabbany SY; James D; Rafii S
    Tissue Eng Part A; 2010 Jul; 16(7):2157-9. PubMed ID: 20367255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.
    Andersson H; van den Berg A
    Lab Chip; 2004 Apr; 4(2):98-103. PubMed ID: 15052347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic 3D cell culture: potential application for tissue-based bioassays.
    Li XJ; Valadez AV; Zuo P; Nie Z
    Bioanalysis; 2012 Jun; 4(12):1509-25. PubMed ID: 22793034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer.
    Seo BR; DelNero P; Fischbach C
    Adv Drug Deliv Rev; 2014 Apr; 69-70():205-216. PubMed ID: 24309015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.