These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 20214638)
1. Identification of the amino acid residues affecting the catalytic pocket of the Sulfolobus solfataricus signature amidase. Elisa C; Sergio A Protein Pept Lett; 2010 Feb; 17(2):146-50. PubMed ID: 20214638 [TBL] [Abstract][Full Text] [Related]
2. Characterization of mutants of Sulfolobus solfataricus signature amidase able to hydrolyse R-ketoprofen amide. Giordano C; Ammendola S Protein Pept Lett; 2008; 15(6):617-23. PubMed ID: 18680459 [TBL] [Abstract][Full Text] [Related]
3. Oligomerization of Sulfolobus solfataricus signature amidase is promoted by acidic pH and high temperature. Scotto D'Abusco A; Casadio R; Tasco G; Giangiacomo L; Giartosio A; Calamia V; Di Marco S; Chiaraluce R; Consalvi V; Scandurra R; Politi L Archaea; 2005 Dec; 1(6):411-23. PubMed ID: 16243781 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure at 1.8 A resolution and identification of active site residues of Sulfolobus solfataricus peptidyl-tRNA hydrolase. Fromant M; Schmitt E; Mechulam Y; Lazennec C; Plateau P; Blanquet S Biochemistry; 2005 Mar; 44(11):4294-301. PubMed ID: 15766258 [TBL] [Abstract][Full Text] [Related]
5. Identification of substrate-binding and selectivity-related residues of maltooligosyltrehalose synthase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Tseng WC; Lin CR; Hung XG; Wei TY; Chen YC; Fang TY Enzyme Microb Technol; 2014 Mar; 56():53-9. PubMed ID: 24564903 [TBL] [Abstract][Full Text] [Related]
6. Thermophilic archaeal enzymes and applications in biocatalysis. Littlechild JA Biochem Soc Trans; 2011 Jan; 39(1):155-8. PubMed ID: 21265764 [TBL] [Abstract][Full Text] [Related]
7. The signature amidase from Sulfolobus solfataricus belongs to the CX3C subgroup of enzymes cleaving both amides and nitriles. Ser195 and Cys145 are predicted to be the active site nucleophiles. Cilia E; Fabbri A; Uriani M; Scialdone GG; Ammendola S FEBS J; 2005 Sep; 272(18):4716-24. PubMed ID: 16156792 [TBL] [Abstract][Full Text] [Related]
8. pH-, temperature- and ion-dependent oligomerization of Sulfolobus solfataricus recombinant amidase: a study with site-specific mutants. Politi L; Chiancone E; Giangiacomo L; Cervoni L; Scotto d'Abusco A; Scorsino S; Scandurra R Archaea; 2009 Feb; 2(4):221-31. PubMed ID: 19478917 [TBL] [Abstract][Full Text] [Related]
9. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase. Pennacchio A; Esposito L; Zagari A; Rossi M; Raia CA Extremophiles; 2009 Sep; 13(5):751-61. PubMed ID: 19588068 [TBL] [Abstract][Full Text] [Related]
10. Molecular Determinants of N-Acetylglucosamine Recognition and Turnover by N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside Deacetylase (MshB). Huang X; Hernick M Biochemistry; 2015 Jun; 54(24):3784-90. PubMed ID: 26024468 [TBL] [Abstract][Full Text] [Related]
11. An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus. Mackay DT; Botting CH; Taylor GL; White MF Mol Microbiol; 2007 Jun; 64(6):1540-8. PubMed ID: 17511810 [TBL] [Abstract][Full Text] [Related]
12. Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeon Sulfolobus solfataricus. Scotto d'Abusco A; Ammendola S; Scandurra R; Politi L Extremophiles; 2001 Jun; 5(3):183-92. PubMed ID: 11453462 [TBL] [Abstract][Full Text] [Related]
13. Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism. Ettema TJ; Makarova KS; Jellema GL; Gierman HJ; Koonin EV; Huynen MA; de Vos WM; van der Oost J J Bacteriol; 2004 Nov; 186(22):7754-62. PubMed ID: 15516590 [TBL] [Abstract][Full Text] [Related]
14. The Sulfolobus solfataricus electron donor partners of thermophilic CYP119: an unusual non-NAD(P)H-dependent cytochrome P450 system. Puchkaev AV; Ortiz de Montellano PR Arch Biochem Biophys; 2005 Feb; 434(1):169-77. PubMed ID: 15629120 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis amidase 1, a member of the amidase signature family. Neu D; Lehmann T; Elleuche S; Pollmann S FEBS J; 2007 Jul; 274(13):3440-51. PubMed ID: 17555521 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of divalent metal ion binding in the active site of class II α-mannosidase from Sulfolobus solfataricus. Hansen DK; Webb H; Nielsen JW; Harris P; Winther JR; Willemoës M Biochemistry; 2015 Mar; 54(11):2032-9. PubMed ID: 25751413 [TBL] [Abstract][Full Text] [Related]
17. Enhancement in the catalytic activity of Sulfolobus solfataricus P2 (+)-γ-lactamase by semi-rational design with the aid of a newly established high-throughput screening method. Gao S; Lu Y; Li Y; Huang R; Zheng G Appl Microbiol Biotechnol; 2019 Jan; 103(1):251-263. PubMed ID: 30310965 [TBL] [Abstract][Full Text] [Related]
18. Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling. Choi YH; Lee YN; Park YJ; Yoon SJ; Lee HB BMB Rep; 2016 Jun; 49(6):349-54. PubMed ID: 27222124 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of the destabilization produced by an amino-terminal tag in the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus. Ausili A; Cobucci-Ponzano B; Di Lauro B; D'Avino R; Scirè A; Rossi M; Tanfani F; Moracci M Biochimie; 2006 Jul; 88(7):807-17. PubMed ID: 16494988 [TBL] [Abstract][Full Text] [Related]
20. Biochemical characterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus: insights into mechanisms of protein stabilization. Porcelli M; Peluso I; Marabotti A; Facchiano A; Cacciapuoti G Arch Biochem Biophys; 2009 Mar; 483(1):55-65. PubMed ID: 19121283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]