BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20214638)

  • 21. An additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation?
    Haferkamp P; Kutschki S; Treichel J; Hemeda H; Sewczyk K; Hoffmann D; Zaparty M; Siebers B
    Biochem Soc Trans; 2011 Jan; 39(1):77-81. PubMed ID: 21265750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and biochemical characterization of protein acetyltransferase from Sulfolobus solfataricus.
    Brent MM; Iwata A; Carten J; Zhao K; Marmorstein R
    J Biol Chem; 2009 Jul; 284(29):19412-9. PubMed ID: 19473964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional characterization of the TYW3/Taw3 class of SAM-dependent methyltransferases.
    Currie MA; Brown G; Wong A; Ohira T; Sugiyama K; Suzuki T; Yakunin AF; Jia Z
    RNA; 2017 Mar; 23(3):346-354. PubMed ID: 27932585
    [No Abstract]   [Full Text] [Related]  

  • 24. In Vivo Formation of the Protein Disulfide Bond That Enhances the Thermostability of Diphosphomevalonate Decarboxylase, an Intracellular Enzyme from the Hyperthermophilic Archaeon Sulfolobus solfataricus.
    Hattori A; Unno H; Goda S; Motoyama K; Yoshimura T; Hemmi H
    J Bacteriol; 2015 Nov; 197(21):3463-71. PubMed ID: 26303832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two unique membrane-bound AAA proteins from Sulfolobus solfataricus.
    Serek-Heuberger J; Hobel CF; Dunin-Horkawicz S; Rockel B; Martin J; Lupas AN
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):118-22. PubMed ID: 19143614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis for substrate-specific acetylation of Nα-acetyltransferase Ard1 from Sulfolobus solfataricus.
    Chang YY; Hsu CH
    Sci Rep; 2015 Mar; 5():8673. PubMed ID: 25728374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental assessment of the importance of amino acid positions identified by an entropy-based correlation analysis of multiple-sequence alignments.
    Dietrich S; Borst N; Schlee S; Schneider D; Janda JO; Sterner R; Merkl R
    Biochemistry; 2012 Jul; 51(28):5633-41. PubMed ID: 22737967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene cloning and expression in Escherichia coli of a bi-functional beta-D-xylosidase/alpha-L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation.
    Morana A; Paris O; Maurelli L; Rossi M; Cannio R
    Extremophiles; 2007 Jan; 11(1):123-32. PubMed ID: 17033733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterization of 1-Cys peroxiredoxin from Sulfolobus solfataricus and its involvement in the response to oxidative stress.
    Limauro D; Pedone E; Pirone L; Bartolucci S
    FEBS J; 2006 Feb; 273(4):721-31. PubMed ID: 16441659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase.
    Wu Y; Yuan S; Chen S; Wu D; Chen J; Wu J
    Food Chem; 2013 Jun; 138(2-3):1588-95. PubMed ID: 23411285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A phosphohexomutase from the archaeon Sulfolobus solfataricus is covalently modified by phosphorylation on serine.
    Ray WK; Keith SM; DeSantis AM; Hunt JP; Larson TJ; Helm RF; Kennelly PJ
    J Bacteriol; 2005 Jun; 187(12):4270-5. PubMed ID: 15937189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel thermostable arylesterase from the archaeon Sulfolobus solfataricus P1: purification, characterization, and expression.
    Park YJ; Yoon SJ; Lee HB
    J Bacteriol; 2008 Dec; 190(24):8086-95. PubMed ID: 18931117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog.
    Liszczak G; Marmorstein R
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14652-7. PubMed ID: 23959863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.
    Andersen RW; Leggio LL; Hove-Jensen B; Kadziola A
    Extremophiles; 2015 Mar; 19(2):407-15. PubMed ID: 25605536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clarifying the catalytic roles of conserved residues in the amidase signature family.
    Patricelli MP; Cravatt BF
    J Biol Chem; 2000 Jun; 275(25):19177-84. PubMed ID: 10764768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus.
    Szabó Z; Albers SV; Driessen AJ
    J Bacteriol; 2006 Feb; 188(4):1437-43. PubMed ID: 16452426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2.
    Han D; Krauss G
    FEBS Lett; 2009 Feb; 583(4):771-6. PubMed ID: 19174159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of an archaeal Sm protein from Sulfolobus solfataricus.
    Kilic T; Thore S; Suck D
    Proteins; 2005 Nov; 61(3):689-93. PubMed ID: 16184597
    [No Abstract]   [Full Text] [Related]  

  • 39. Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad.
    Suzuki K; Hori A; Kawamoto K; Thangudu RR; Ishida T; Igarashi K; Samejima M; Yamada C; Arakawa T; Wakagi T; Koseki T; Fushinobu S
    Proteins; 2014 Oct; 82(10):2857-67. PubMed ID: 25066066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased Processivity, Misincorporation, and Nucleotide Incorporation Efficiency in Sulfolobus solfataricus Dpo4 Thumb Domain Mutants.
    Wang L; Liang C; Wu J; Liu L; Tyo KEJ
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.