These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20214638)

  • 61. Kinetics and fidelity of polymerization by DNA polymerase III from Sulfolobus solfataricus.
    Bauer RJ; Begley MT; Trakselis MA
    Biochemistry; 2012 Mar; 51(9):1996-2007. PubMed ID: 22339170
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Importance of a potential salt bridge and hydrophobic core in the function and oligomerization of a small heat shock protein.
    Wen Z; Wang Y; Xu X; Yang B; Li W; Xie M
    Protein Pept Lett; 2010 Jun; 17(6):751-8. PubMed ID: 20015024
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing.
    Reeks J; Sokolowski RD; Graham S; Liu H; Naismith JH; White MF
    Biochem J; 2013 Jun; 452(2):223-30. PubMed ID: 23527601
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structure of the ribosome associating GTPase HflX.
    Wu H; Sun L; Blombach F; Brouns SJ; Snijders AP; Lorenzen K; van den Heuvel RH; Heck AJ; Fu S; Li X; Zhang XC; Rao Z; van der Oost J
    Proteins; 2010 Feb; 78(3):705-13. PubMed ID: 19787775
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Crystal structure of a novel archaeal AAA+ ATPase SSO1545 from Sulfolobus solfataricus.
    Xu Q; Rife CL; Carlton D; Miller MD; Krishna SS; Elsliger MA; Abdubek P; Astakhova T; Chiu HJ; Clayton T; Duan L; Feuerhelm J; Grzechnik SK; Hale J; Han GW; Jaroszewski L; Jin KK; Klock HE; Knuth MW; Kumar A; McMullan D; Morse AT; Nigoghossian E; Okach L; Oommachen S; Paulsen J; Reyes R; van den Bedem H; Hodgson KO; Wooley J; Deacon AM; Godzik A; Lesley SA; Wilson IA
    Proteins; 2009 Mar; 74(4):1041-9. PubMed ID: 19089981
    [No Abstract]   [Full Text] [Related]  

  • 66. Probing the catalytically essential residues of the alpha-L-fucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Cobucci-Ponzano B; Mazzone M; Rossi M; Moracci M
    Biochemistry; 2005 Apr; 44(16):6331-42. PubMed ID: 15835922
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Crystal structure and substrate specificity of the thermophilic serine:pyruvate aminotransferase from Sulfolobus solfataricus.
    Sayer C; Bommer M; Isupov M; Ward J; Littlechild J
    Acta Crystallogr D Biol Crystallogr; 2012 Jul; 68(Pt 7):763-72. PubMed ID: 22751661
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Natural Mutagenesis-Enabled Global Proteomic Study of Metabolic and Carbon Source Implications in Mutant Thermoacidophillic Archaeon Sulfolobus solfataricus PBL2025.
    Qiu W; Pham TK; Zou X; Ow SY; Wright PC
    J Proteome Res; 2017 Jul; 16(7):2370-2383. PubMed ID: 28514846
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Autodisplay of an archaeal γ-lactamase on the cell surface of Escherichia coli using Xcc_Est as an anchoring scaffold and its application for preparation of the enantiopure antiviral drug intermediate (-) vince lactam.
    Wang J; Zhao G; Zhang Z; Liang Q; Min C; Wu S
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):6991-7001. PubMed ID: 24756321
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Extensive lysine methylation in hyperthermophilic crenarchaea: potential implications for protein stability and recombinant enzymes.
    Botting CH; Talbot P; Paytubi S; White MF
    Archaea; 2010 Aug; 2010():. PubMed ID: 20811616
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Crystallization and X-ray diffraction measurements of a thermophilic archaeal recombinant amidase from Sulfolobus solfataricus MT4.
    Nastopoulos V; Vallone B; Politi L; Scotto D'Abusco A; Scandurra R; Tsernoglou D
    Acta Crystallogr D Biol Crystallogr; 2001 Jul; 57(Pt 7):1036-7. PubMed ID: 11418775
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cross-functionalities of Bacillus deacetylases involved in bacillithiol biosynthesis and bacillithiol-S-conjugate detoxification pathways.
    Fang Z; Roberts AA; Weidman K; Sharma SV; Claiborne A; Hamilton CJ; Dos Santos PC
    Biochem J; 2013 Sep; 454(2):239-47. PubMed ID: 23758290
    [TBL] [Abstract][Full Text] [Related]  

  • 73. SSoNDelta and SSoNDeltalong: two thermostable esterases from the same ORF in the archaeon Sulfolobus solfataricus?
    Mandrich L; Pezzullo M; Rossi M; Manco G
    Archaea; 2007 May; 2(2):109-15. PubMed ID: 17350931
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Sulfolobus solfataricus RecQ-like DNA helicase Hel112 inhibits the NurA/HerA complex exonuclease activity.
    De Falco M; Massa F; Rossi M; De Felice M
    Extremophiles; 2018 Jul; 22(4):581-589. PubMed ID: 29488113
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The mechanism of the amidases: mutating the glutamate adjacent to the catalytic triad inactivates the enzyme due to substrate mispositioning.
    Weber BW; Kimani SW; Varsani A; Cowan DA; Hunter R; Venter GA; Gumbart JC; Sewell BT
    J Biol Chem; 2013 Oct; 288(40):28514-23. PubMed ID: 23946488
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The alpha-L-fucosidase from Sulfolobus solfataricus.
    Cobucci-Ponzano B; Conte F; Rossi M; Moracci M
    Extremophiles; 2008 Jan; 12(1):61-8. PubMed ID: 17687508
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of a thermostable and enantioselective amidase from the thermoacidophilic archaeon Sulfolobus tokodaii strain 7.
    Suzuki Y; Ohta H
    Protein Expr Purif; 2006 Feb; 45(2):368-73. PubMed ID: 16125409
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Homodimeric hexaprenyl pyrophosphate synthase from the thermoacidophilic crenarchaeon Sulfolobus solfataricus displays asymmetric subunit structures.
    Sun HY; Ko TP; Kuo CJ; Guo RT; Chou CC; Liang PH; Wang AH
    J Bacteriol; 2005 Dec; 187(23):8137-48. PubMed ID: 16291686
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase.
    Bagarolo ML; Porcelli M; Martino E; Feller G; Cacciapuoti G
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1458-65. PubMed ID: 26116147
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification and physicochemical characterization of BldR2 from Sulfolobus solfataricus, a novel archaeal member of the MarR transcription factor family.
    Fiorentino G; Del Giudice I; Bartolucci S; Durante L; Martino L; Del Vecchio P
    Biochemistry; 2011 Aug; 50(31):6607-21. PubMed ID: 21714562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.