These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20214953)

  • 1. Fungal toxins and multiple sclerosis: a compelling connection.
    Purzycki CB; Shain DH
    Brain Res Bull; 2010 Apr; 82(1-2):4-6. PubMed ID: 20214953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple sclerosis. Oligodendrocyte survival and proliferation in an active established lesion.
    Raine CS; Scheinberg L; Waltz JM
    Lab Invest; 1981 Dec; 45(6):534-46. PubMed ID: 7321526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis.
    Omari KM; John GR; Sealfon SC; Raine CS
    Brain; 2005 May; 128(Pt 5):1003-15. PubMed ID: 15774504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cytotoxic factor for glial cells: a new avenue of research for multiple sclerosis?
    Ménard A; Paranhos-Baccala G; Pelletier J; Mandrand B; Seigneurin JM; Perron H; Reiger F
    Cell Mol Biol (Noisy-le-grand); 1997 Sep; 43(6):889-901. PubMed ID: 9359636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Virus and demyelination: why suspect that a virus may be involved in the aetiology of multiple sclerosis?].
    Fernández-Muñoz R; Celma-Serrat M
    Rev Neurol; 2002 Nov 16-30; 35(10):964-72. PubMed ID: 12436401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oligodendroglial cell: biology and immunology and relationship to multiple sclerosis.
    Bartlett PF; Mackay IR
    J Clin Lab Immunol; 1983 May; 11(1):1-7. PubMed ID: 6348293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early glial responses in murine models of multiple sclerosis.
    Ayers MM; Hazelwood LJ; Catmull DV; Wang D; McKormack Q; Bernard CC; Orian JM
    Neurochem Int; 2004; 45(2-3):409-19. PubMed ID: 15145555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of oligodendrocyte proliferation and remyelination after chronic demyelination. Relevance to multiple sclerosis.
    Raine CS; Moore GR; Hintzen R; Traugott U
    Lab Invest; 1988 Oct; 59(4):467-76. PubMed ID: 2459499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pathology of multiple sclerosis.
    Sobel RA
    Neurol Clin; 1995 Feb; 13(1):1-21. PubMed ID: 7739499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mold and mycotoxins: effects on the neurological and immune systems in humans.
    Campbell AW; Thrasher JD; Gray MR; Vojdani A
    Adv Appl Microbiol; 2004; 55():375-406. PubMed ID: 15350803
    [No Abstract]   [Full Text] [Related]  

  • 11. Case report: DNA fragmentation in glial cells in a cerebral biopsy from a multiple sclerosis patient.
    Benjelloun N; Ménard A; Charriaut-Marlangue C; Mokhtari K; Perron H; Hauw JJ; Rieger F
    Cell Mol Biol (Noisy-le-grand); 1998 Jun; 44(4):579-83. PubMed ID: 9678892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis.
    Schmierer K; Parkes HG; So PW; An SF; Brandner S; Ordidge RJ; Yousry TA; Miller DH
    Brain; 2010 Mar; 133(Pt 3):858-67. PubMed ID: 20123726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions.
    Koning N; Swaab DF; Hoek RM; Huitinga I
    J Neuropathol Exp Neurol; 2009 Feb; 68(2):159-67. PubMed ID: 19151626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple sclerosis and central nervous system demyelination.
    Pouly S; Antel JP
    J Autoimmun; 1999 Nov; 13(3):297-306. PubMed ID: 10550217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous and induced remyelination in multiple sclerosis and the Theiler's virus model of central nervous system demyelination.
    Miller DJ; Rodriguez M
    Microsc Res Tech; 1995 Oct; 32(3):230-45. PubMed ID: 8527857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental allergic encephalomyelitis as an animal model for multiple sclerosis].
    Lukinović-Skudar V; Taradi SK; Andreis I; Zupancić V; Taradi M
    Lijec Vjesn; 2001; 123(3-4):81-8. PubMed ID: 11488222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunopathogenesis of multiple sclerosis.
    Agrawal SM; Yong VW
    Int Rev Neurobiol; 2007; 79():99-126. PubMed ID: 17531839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis.
    Pluchino S; Martino G
    J Neurol Sci; 2008 Feb; 265(1-2):105-10. PubMed ID: 17706971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myelin proteolipid protein: an effective autoantigen and target of autoimmunity in multiple sclerosis.
    Greer JM; Pender MP
    J Autoimmun; 2008 Nov; 31(3):281-7. PubMed ID: 18502611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-neuroglial and anti-neuronal cell factors in experimental allergic encephalomyelitis and multiple sclerosis.
    Bornstein MB
    Int Arch Allergy Appl Immunol; 1969; 36():Suppl:574-607. PubMed ID: 4906733
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.