BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20215059)

  • 21. Direct processing of alginate-immobilized microalgae into polyhydroxybutyrate using marine bacterium of Saccharophagus degradans.
    Hu X; Meneses YE; Stratton J; Huo S
    Bioresour Technol; 2022 May; 351():126898. PubMed ID: 35245650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products.
    Jiang C; Liu Z; Cheng D; Mao X
    Biotechnol Adv; 2020 Dec; 45():107641. PubMed ID: 33035614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ab initio phasing of a nucleoside hydrolase-related hypothetical protein from Saccharophagus degradans that is associated with carbohydrate metabolism.
    Hehemann JH; Marsters C; Boraston AB
    Proteins; 2011 Oct; 79(10):2992-8. PubMed ID: 21905122
    [No Abstract]   [Full Text] [Related]  

  • 24. Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose.
    Allouch J; Helbert W; Henrissat B; Czjzek M
    Structure; 2004 Apr; 12(4):623-32. PubMed ID: 15062085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadherin domains in the polysaccharide-degrading marine bacterium Saccharophagus degradans 2-40 are carbohydrate-binding modules.
    Fraiberg M; Borovok I; Bayer EA; Weiner RM; Lamed R
    J Bacteriol; 2011 Jan; 193(1):283-5. PubMed ID: 21036994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp. SE50/110.
    Wendler S; Ortseifen V; Persicke M; Klein A; Neshat A; Niehaus K; Schneiker-Bekel S; Walter F; Wehmeier UF; Kalinowski J; Pühler A
    J Biotechnol; 2014 Dec; 191():113-20. PubMed ID: 25169663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40.
    Ha SC; Lee S; Lee J; Kim HT; Ko HJ; Kim KH; Choi IG
    Biochem Biophys Res Commun; 2011 Aug; 412(2):238-44. PubMed ID: 21810409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Agar degradation by microorganisms and agar-degrading enzymes.
    Chi WJ; Chang YK; Hong SK
    Appl Microbiol Biotechnol; 2012 May; 94(4):917-30. PubMed ID: 22526785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass.
    Kim HT; Yun EJ; Wang D; Chung JH; Choi IG; Kim KH
    Bioresour Technol; 2013 May; 136():582-7. PubMed ID: 23567734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont.
    Pluvinage B; Grondin JM; Amundsen C; Klassen L; Moote PE; Xiao Y; Thomas D; Pudlo NA; Anele A; Martens EC; Inglis GD; Uwiera RER; Boraston AB; Abbott DW
    Nat Commun; 2018 Mar; 9(1):1043. PubMed ID: 29535379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40.
    Kim HT; Chung JH; Wang D; Lee J; Woo HC; Choi IG; Kim KH
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2233-9. PubMed ID: 22281843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Periplasmic expression of a Saccharophagus cellodextrinase enables E. coli to ferment cellodextrin.
    Rutter C; Mao Z; Chen R
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8129-38. PubMed ID: 23306638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of bacterial agarase on agarose gel in cell culture.
    Carlsson J; Malmqvist M
    In Vitro; 1977 Jul; 13(7):417-22. PubMed ID: 885561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions.
    Raman B; Nandakumar MP; Muthuvijayan V; Marten MR
    Biotechnol Bioeng; 2005 Nov; 92(3):384-92. PubMed ID: 16180237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated metabolite and gene expression profiling revealing phytochrome A regulation of polyamine biosynthesis of Arabidopsis thaliana.
    Jumtee K; Bamba T; Okazawa A; Fukusaki E; Kobayashi A
    J Exp Bot; 2008; 59(6):1187-200. PubMed ID: 18375607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of Kalopanax septemlobus leaf extract in synthesis of silver nanoparticles for selective inhibition of specific bacterial strain in mixed culture.
    Salunke BK; Sawant SS; Kim BS
    Appl Biochem Biotechnol; 2014 Sep; 174(2):587-601. PubMed ID: 25085530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of a novel Saccharophagus species (Myt-1) capable of degrading a variety of seaweeds and polysaccharides.
    Sakatoku A; Wakabayashi M; Tanaka Y; Tanaka D; Nakamura S
    Microbiologyopen; 2012 Mar; 1(1):2-12. PubMed ID: 22950007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene cloning, expression, and characterization of a beta-agarase, agaB34,from Agarivorans albus YKW-34.
    Fu XT; Pan CH; Lin H; Kim SM
    J Microbiol Biotechnol; 2009 Mar; 19(3):257-64. PubMed ID: 19349750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans.
    Kim HT; Ko HJ; Kim N; Kim D; Lee D; Choi IG; Woo HC; Kim MD; Kim KH
    Biotechnol Lett; 2012 Jun; 34(6):1087-92. PubMed ID: 22391735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MetaQuant: a tool for the automatic quantification of GC/MS-based metabolome data.
    Bunk B; Kucklick M; Jonas R; Münch R; Schobert M; Jahn D; Hiller K
    Bioinformatics; 2006 Dec; 22(23):2962-5. PubMed ID: 17046977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.