These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 20215435)

  • 81. Extreme dNTP pool changes and hypermutability in dcd ndk strains.
    Tse L; Kang TM; Yuan J; Mihora D; Becket E; Maslowska KH; Schaaper RM; Miller JH
    Mutat Res; 2016; 784-785():16-24. PubMed ID: 26789486
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand replication infidelity.
    Buckland RJ; Watt DL; Chittoor B; Nilsson AK; Kunkel TA; Chabes A
    PLoS Genet; 2014 Dec; 10(12):e1004846. PubMed ID: 25474551
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Dynamic Control of dNTP Synthesis in Early Embryos.
    Song Y; Marmion RA; Park JO; Biswas D; Rabinowitz JD; Shvartsman SY
    Dev Cell; 2017 Aug; 42(3):301-308.e3. PubMed ID: 28735680
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in
    Bradshaw E; Yoshida M; Ling F
    G3 (Bethesda); 2017 Sep; 7(9):3083-3090. PubMed ID: 28717049
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Deoxyribonucleoside triphosphate metabolism and the mammalian cell cycle. Effects of hydroxyurea on mutant and wild-type mouse S49 T-lymphoma cells.
    Eriksson S; Skog S; Tribukait B; Wallström B
    Exp Cell Res; 1987 Jan; 168(1):79-88. PubMed ID: 3096753
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Phylogenetic sequence analysis and functional studies reveal compensatory amino acid substitutions in loop 2 of human ribonucleotide reductase.
    Knappenberger AJ; Grandhi S; Sheth R; Ahmad MF; Viswanathan R; Harris ME
    J Biol Chem; 2017 Oct; 292(40):16463-16476. PubMed ID: 28808063
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Ribonucleotide reductases: influence of environment on synthesis and activity.
    Gon S; Beckwith J
    Antioxid Redox Signal; 2006; 8(5-6):773-80. PubMed ID: 16771669
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A Link between Deoxyribonucleotide Metabolites and Embryonic Cell-Cycle Control.
    Liu B; Winkler F; Herde M; Witte CP; Großhans J
    Curr Biol; 2019 Apr; 29(7):1187-1192.e3. PubMed ID: 30880011
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Spd1 accumulation causes genome instability independently of ribonucleotide reductase activity but functions to protect the genome when deoxynucleotide pools are elevated.
    Fleck O; Vejrup-Hansen R; Watson A; Carr AM; Nielsen O; Holmberg C
    J Cell Sci; 2013 Nov; 126(Pt 21):4985-94. PubMed ID: 23986475
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase.
    Elledge SJ; Davis RW
    Genes Dev; 1990 May; 4(5):740-51. PubMed ID: 2199320
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Cellular regulation of ribonucleotide reductase in eukaryotes.
    Guarino E; Salguero I; Kearsey SE
    Semin Cell Dev Biol; 2014 Jun; 30():97-103. PubMed ID: 24704278
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Trace amounts of 8-oxo-dGTP in mitochondrial dNTP pools reduce DNA polymerase gamma replication fidelity.
    Pursell ZF; McDonald JT; Mathews CK; Kunkel TA
    Nucleic Acids Res; 2008 Apr; 36(7):2174-81. PubMed ID: 18276636
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Spd2 assists Spd1 in the modulation of ribonucleotide reductase architecture but does not regulate deoxynucleotide pools.
    Vejrup-Hansen R; Fleck O; Landvad K; Fahnøe U; Broendum SS; Schreurs AS; Kragelund BB; Carr AM; Holmberg C; Nielsen O
    J Cell Sci; 2014 Jun; 127(Pt 11):2460-70. PubMed ID: 24652833
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Allosteric regulation of the class III anaerobic ribonucleotide reductase from bacteriophage T4.
    Andersson J; Westman M; Hofer A; Sjoberg BM
    J Biol Chem; 2000 Jun; 275(26):19443-8. PubMed ID: 10748029
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Deoxyribonucleotides as genetic and metabolic regulators.
    Mathews CK
    FASEB J; 2014 Sep; 28(9):3832-40. PubMed ID: 24928192
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Overexpression of the RNR1 gene rescues Saccharomyces cerevisiae mutants in the mitochondrial DNA polymerase-encoding MIP1 gene.
    Lecrenier N; Foury F
    Mol Gen Genet; 1995 Nov; 249(1):1-7. PubMed ID: 8552025
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Bcl2 induces DNA replication stress by inhibiting ribonucleotide reductase.
    Xie M; Yen Y; Owonikoko TK; Ramalingam SS; Khuri FR; Curran WJ; Doetsch PW; Deng X
    Cancer Res; 2014 Jan; 74(1):212-23. PubMed ID: 24197132
    [TBL] [Abstract][Full Text] [Related]  

  • 98. DNA building blocks: keeping control of manufacture.
    Hofer A; Crona M; Logan DT; Sjöberg BM
    Crit Rev Biochem Mol Biol; 2012; 47(1):50-63. PubMed ID: 22050358
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A selection-based next generation sequencing approach to develop robust, genotype-specific mutation profiles in Saccharomyces cerevisiae.
    Lamb NA; Bard JE; Buck MJ; Surtees JA
    G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33784385
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Giant yeast cells with nonrecyclable ribonucleotide reductase.
    Ma E; Goldar A; Verbavatz JM; Marsolier-Kergoat MC
    Mol Genet Genomics; 2011 May; 285(5):415-25. PubMed ID: 21442328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.