These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 2021618)
1. A model peptide with enhanced helicity. Merutka G; Shalongo W; Stellwagen E Biochemistry; 1991 Apr; 30(17):4245-8. PubMed ID: 2021618 [TBL] [Abstract][Full Text] [Related]
2. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Chakrabartty A; Kortemme T; Padmanabhan S; Baldwin RL Biochemistry; 1993 Jun; 32(21):5560-5. PubMed ID: 8504077 [TBL] [Abstract][Full Text] [Related]
3. Residue helix parameters obtained from dichroic analysis of peptides of defined sequence. Park SH; Shalongo W; Stellwagen E Biochemistry; 1993 Jul; 32(27):7048-53. PubMed ID: 8334134 [TBL] [Abstract][Full Text] [Related]
4. Analysis of N-terminal capping using carbonyl-carbon chemical shift measurements. Park SH; Shalongo W; Stellwagen E Proteins; 1998 Nov; 33(2):167-76. PubMed ID: 9779786 [TBL] [Abstract][Full Text] [Related]
5. The role of PII conformations in the calculation of peptide fractional helix content. Park SH; Shalongo W; Stellwagen E Protein Sci; 1997 Aug; 6(8):1694-700. PubMed ID: 9260281 [TBL] [Abstract][Full Text] [Related]
6. Studies of synthetic helical peptides using circular dichroism and nuclear magnetic resonance. Bradley EK; Thomason JF; Cohen FE; Kosen PA; Kuntz ID J Mol Biol; 1990 Oct; 215(4):607-22. PubMed ID: 2231722 [TBL] [Abstract][Full Text] [Related]
7. Design and characterization of an intramolecular antiparallel coiled coil peptide. Myszka DG; Chaiken IM Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695 [TBL] [Abstract][Full Text] [Related]
8. Probing alpha-helical secondary structure at a specific site in model peptides via restriction of tryptophan side-chain rotamer conformation. Willis KJ; Neugebauer W; Sikorska M; Szabo AG Biophys J; 1994 May; 66(5):1623-30. PubMed ID: 8061211 [TBL] [Abstract][Full Text] [Related]
9. Dichroic statistical model for prediction and analysis of peptide helicity. Shalongo W; Stellwagen E Proteins; 1997 Aug; 28(4):467-80. PubMed ID: 9261864 [TBL] [Abstract][Full Text] [Related]
10. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
11. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin. Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885 [TBL] [Abstract][Full Text] [Related]
12. Positional independence and additivity of amino acid replacements on helix stability in monomeric peptides. Merutka G; Stellwagen E Biochemistry; 1990 Jan; 29(4):894-8. PubMed ID: 2111168 [TBL] [Abstract][Full Text] [Related]
13. Evidence for glutamate self-capping within a peptide helix. Stellwagen E; Shalongo W Biopolymers; 1997; 43(6):413-8. PubMed ID: 9615489 [TBL] [Abstract][Full Text] [Related]
14. Effect of amino acid ion pairs on peptide helicity. Merutka G; Stellwagen E Biochemistry; 1991 Feb; 30(6):1591-4. PubMed ID: 1993175 [TBL] [Abstract][Full Text] [Related]
15. Role of recurrent hydrophobic residues in catalysis of helix formation by T cell-presented peptides in the presence of lipid vesicles. Lu S; Reyes VE; Lew RA; Anderson J; Mole J; Humphreys RE; Ciardelli T J Immunol; 1990 Aug; 145(3):899-904. PubMed ID: 2373862 [TBL] [Abstract][Full Text] [Related]
16. Folding simulations of alanine-based peptides with lysine residues. Sung SS Biophys J; 1995 Mar; 68(3):826-34. PubMed ID: 7756550 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of alpha-helix-forming peptides by gene engineering methods and their characterization by circular dichroism spectra measurements. Kojima S; Kuriki Y; Sato Y; Arisaka F; Kumagai I; Takahashi S; Miura K Biochim Biophys Acta; 1996 May; 1294(2):129-37. PubMed ID: 8645730 [TBL] [Abstract][Full Text] [Related]
18. The contribution of residue ion pairs to the helical stability of a model peptide. Stellwagen E; Park SH; Shalongo W; Jain A Biopolymers; 1992 Sep; 32(9):1193-200. PubMed ID: 1420987 [TBL] [Abstract][Full Text] [Related]
19. Modulation of the helical stability of a model peptide by ionic residues. Park SH; Shalongo W; Stellwagen E Biochemistry; 1993 Nov; 32(47):12901-5. PubMed ID: 8251513 [TBL] [Abstract][Full Text] [Related]
20. Stabilization of helical structure in two 17-residue amphipathic analogues of the C-terminal peptide of cytochrome C. Collawn JF; Paterson Y Biopolymers; 1990 Jul-Aug 5; 29(8-9):1289-96. PubMed ID: 2164428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]