These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2021641)

  • 1. Conformational analysis of the polar head group in phosphatidylcholine bilayers: a structural change induced by cations.
    Akutsu H; Nagamori T
    Biochemistry; 1991 May; 30(18):4510-6. PubMed ID: 2021641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.
    Bonev BB; Morrow MR
    Biophys J; 1995 Aug; 69(2):518-23. PubMed ID: 8527666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of phosphatidylcholine in the gel and liquid-crystalline states to membrane surface charges.
    Macdonald PM; Leisen J; Marassi FM
    Biochemistry; 1991 Apr; 30(14):3558-66. PubMed ID: 2012813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of phospholipids in membranes elucidated by combined use of NMR and vibrational spectroscopies.
    Akutsu H
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183352. PubMed ID: 32407775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation and flexibility of the choline head group in phosphatidylcholine bilayers.
    Seelig J; Gally GU; Wohlgemuth R
    Biochim Biophys Acta; 1977 Jun; 467(2):109-19. PubMed ID: 880300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers.
    Brown MF; Seelig J
    Biochemistry; 1978 Jan; 17(2):381-4. PubMed ID: 619997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent effect on phosphatidylcholine headgroup dynamics as revealed by the energetics and dynamics of two gel-state bilayer headgroup structures at subzero temperatures.
    Hsieh CH; Wu WG
    Biophys J; 1995 Jul; 69(1):4-12. PubMed ID: 7669908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes of the phosphatidylcholine headgroup due to membrane dehydration. A 2H-NMR study.
    Bechinger B; Seelig J
    Chem Phys Lipids; 1991; 58(1-2):1-5. PubMed ID: 1934192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2H-NMR comparative study of phosphocholine group conformation in bilayers composed of diacyl and dialkyl phosphatidylcholines.
    Bragina NA; Chupin VV
    Membr Cell Biol; 2000; 14(3):421-8. PubMed ID: 11368502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface charge response of the phosphatidylcholine head group in bilayered micelles from phosphorus and deuterium nuclear magnetic resonance.
    Crowell KJ; Macdonald PM
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):21-30. PubMed ID: 9889304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR.
    Roux M; Bloom M
    Biochemistry; 1990 Jul; 29(30):7077-89. PubMed ID: 2223761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilayers of phosphatidylglycerol. A deuterium and phosphorus nuclear magnetic resonance study of the head-group region.
    Wohlgemuth R; Waespe-Sarcevic N; Seelig J
    Biochemistry; 1980 Jul; 19(14):3315-21. PubMed ID: 7407046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bacteriorhodopsin on the orientation of the headgroup of 1,2-dimyristoyl-sn-glycero-3-phosphocholine in bilayers: a 31P- and 2H-NMR study.
    Gale P; Watts A
    Biochim Biophys Acta; 1992 May; 1106(2):317-24. PubMed ID: 1596511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational constraints on the headgroup and sn-2 chain of bilayer DMPC from NMR dipolar couplings.
    Hong M; Schmidt-Rohr K; Zimmermann H
    Biochemistry; 1996 Jun; 35(25):8335-41. PubMed ID: 8679591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine.
    Gally HU; Niederberger W; Seelig J
    Biochemistry; 1975 Aug; 14(16):3647-52. PubMed ID: 1174349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Order-disorder transition in bilayers of diphytanoyl phosphatidylcholine.
    Hung WC; Chen FY; Huang HW
    Biochim Biophys Acta; 2000 Jul; 1467(1):198-206. PubMed ID: 10930522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolving the two monolayers of a lipid bilayer in giant unilamellar vesicles using deuterium nuclear magnetic resonance.
    Marassi FM; Shivers RR; Macdonald PM
    Biochemistry; 1993 Sep; 32(38):9936-43. PubMed ID: 8399163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of orientational ordering in phosphatidylcholine bilayers based on conformational analysis of the glycerol backbone region.
    Strenk LM; Westerman PW; Doane JW
    Biophys J; 1985 Nov; 48(5):765-73. PubMed ID: 4074836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of primary hydration shell of phosphatidylcholine bilayers at subzero temperatures.
    Hsieh CH; Wu WG
    Biophys J; 1996 Dec; 71(6):3278-87. PubMed ID: 8968597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-lipid interactions at membrane surfaces: a deuterium and phosphorus nuclear magnetic resonance study of the interaction between bovine rhodopsin and the bilayer head groups of dimyristoylphosphatidylcholine.
    Ryba NJ; Dempsey CE; Watts A
    Biochemistry; 1986 Aug; 25(17):4818-25. PubMed ID: 3768315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.