These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 20216659)

  • 1. Christiansen effect in IR spectra of soil-derived atmospheric dusts.
    Carlon HR
    Appl Opt; 1979 Nov; 18(21):3610-4. PubMed ID: 20216659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Christiansen effect in IR spectra of soil-derived atmospheric dusts: addenda.
    Carlon HR
    Appl Opt; 1980 Jun; 19(12):1892. PubMed ID: 20221146
    [No Abstract]   [Full Text] [Related]  

  • 3. Investigation of the Christiansen effect in the mid-infrared region for airborne particles.
    Pollard MJ; Griffiths PR; Nishikida K
    Appl Spectrosc; 2007 Aug; 61(8):860-6. PubMed ID: 17716405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of particle absorption to mass extinction coefficients (0.55-14 microm) of soil-derived atmospheric dusts.
    Carlon HR
    Appl Opt; 1980 Mar; 19(5):690-3. PubMed ID: 20220918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of particle absorption to mass extinction coefficients (0.55-14microm) of soil-derived atmospheric dusts: erratum.
    Carlon HR
    Appl Opt; 1980 Apr; 19(7):1165-72. PubMed ID: 20221002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scattering-angle-dependent Christiansen color spectra data of poly(vinyl chloride) (PVC) suspended in styrene liquid and a comprehensive data list of wavelength-dependent refractive indices of PVC.
    Samitsu S; Miyazaki HT; Segawa H
    Data Brief; 2018 Oct; 20():1099-1104. PubMed ID: 30229126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refractive index measurements of films with biaxial symmetry. 2. Determination of film thickness and refractive indices using polarized transmission spectra in the transparent wavelength range.
    Diao J; Hess DW
    J Phys Chem B; 2005 Jul; 109(26):12819-25. PubMed ID: 16852589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theory for the christiansen filter.
    Clarke RH
    Appl Opt; 1968 May; 7(5):861-8. PubMed ID: 20068700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Transmission Near the Christiansen Wavelength for Dynamic Sand Samples.
    McGinnis CL; Frantz JA; Myers JD; Clabeau AR; Moore AF; Ewing KJ; Hart MB; Watnick AT; Sanghera JS
    Appl Spectrosc; 2024 Apr; ():37028241238782. PubMed ID: 38571340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate.
    Freedman MA; Hasenkopf CA; Beaver MR; Tolbert MA
    J Phys Chem A; 2009 Dec; 113(48):13584-92. PubMed ID: 19877658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-particle light-scattering measurement: photochemical aerosols and atmospheric particulates.
    Phillips DT; Wyatt PJ
    Appl Opt; 1972 Sep; 11(9):2082-7. PubMed ID: 20119285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel inverse method for determining the refractive indices of medium and dispersed particles simultaneously by turbidity measurement.
    Xu S; Liu J; Sun Z; Zhang P
    J Colloid Interface Sci; 2008 Oct; 326(1):110-6. PubMed ID: 18656894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IR reflection spectra of monolayer films sandwiched between two high refractive index materials.
    Lummerstorfer T; Hoffmann H
    Langmuir; 2004 Aug; 20(16):6542-5. PubMed ID: 15274551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral signatures of micron-sized particles in the Shuttle optical environment.
    Rawlins WT; Green BD
    Appl Opt; 1987 Aug; 26(15):3052-60. PubMed ID: 20490008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extinction efficiency in the infrared (2-18 µm) of laboratory ice clouds: observations of scattering minima in the Christiansen bands of ice.
    Arnott WP; Dong YY; Hallett J
    Appl Opt; 1995 Jan; 34(3):541-51. PubMed ID: 20963149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ellipsometry of silica nanoparticulate Langmuir-Blodgett films for the verification of the validity of effective medium approximations.
    Nagy N; Deak A; Hórvölgyi Z; Fried M; Agod A; Barsony I
    Langmuir; 2006 Sep; 22(20):8416-23. PubMed ID: 16981757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent, conductive carbon nanotube films.
    Wu Z; Chen Z; Du X; Logan JM; Sippel J; Nikolou M; Kamaras K; Reynolds JR; Tanner DB; Hebard AF; Rinzler AG
    Science; 2004 Aug; 305(5688):1273-6. PubMed ID: 15333836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the carrier dynamics of photocatalyst micrograins using the Christiansen effect.
    Zhu G; Lu W; Zhu J; Li Y; Guo L; Weng Y
    J Chem Phys; 2017 Jun; 146(23):234202. PubMed ID: 28641418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of reflection and transmission spectra for thin films: transmission.
    Yamamoto K; Ishida H
    Appl Opt; 1995 Jul; 34(21):4177-85. PubMed ID: 21052243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azobenzene-containing polyamic acid with excellent Langmuir-Blodgett-Kuhn film formation behavior suitable for all-optical switching.
    Zong Y; Tawa K; Menges B; Rühe J; Knoll W
    Langmuir; 2005 Jul; 21(15):7036-43. PubMed ID: 16008420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.