These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20216838)

  • 21. Equivalence of expressions for the acoustic scattering of a progressive high-order Bessel beam by an elastic sphere.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1100-3. PubMed ID: 19473927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium.
    Wojtkiewicz S; Liebert A; Rix H; Zołek N; Maniewski R
    Phys Med Biol; 2009 Feb; 54(3):679-97. PubMed ID: 19131674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of the Mueller scattering matrix by use of optical beats from a Zeeman laser.
    McClain WM; Jeng WH; Pati B; Shi Y; Tian D
    Appl Opt; 1994 Mar; 33(7):1230-41. PubMed ID: 20862144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Remark about the notation used for calculating the electromagnetic field scattered by a spherical particle.
    Shifrin KS; Zolotov IG
    Appl Opt; 1993 Sep; 32(27):5397-8. PubMed ID: 20856349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A three-dimensional Bloch wave expansion to determine external scattering from finite phononic crystals.
    Kulpe JA; Sabra KG; Leamy MJ
    J Acoust Soc Am; 2015 Jun; 137(6):3299-313. PubMed ID: 26093420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral shifts and spectral switches produced by the scattering system of two anisotropic particles in different distance.
    Du X
    Opt Express; 2013 Sep; 21(19):22610-6. PubMed ID: 24104149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam.
    Khaled EE; Hill SC; Barber PW
    Appl Opt; 1994 Jan; 33(3):524-32. PubMed ID: 20862044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coherence effects in Mie scattering.
    Fischer DG; van Dijk T; Visser TD; Wolf E
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jan; 29(1):78-84. PubMed ID: 22218353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerically investigating near-field scattering for spatial enhancement of single irregular nano plasma particle.
    Chen SC; Tsai DP
    Scanning; 2004; 26(5 Suppl 1):I109-12. PubMed ID: 15540826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Off-axis scattering of an ultrasound bessel beam by a sphere.
    Silva GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):298-304. PubMed ID: 21342815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between scattered intensity and separation for particles in an evanescent field.
    McKee CT; Clark SC; Walz JY; Ducker WA
    Langmuir; 2005 Jun; 21(13):5783-9. PubMed ID: 15952823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal fluctuations of laser beam radiation in atmospheric precipitation.
    Zhukov AF; Kabanov MV; Tsvyk RS
    Appl Opt; 1988 Feb; 27(3):578-83. PubMed ID: 20523643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scattering of coherent and incoherent light by latex hydrosols.
    Sherman GC; Harris FS; Morse FL
    Appl Opt; 1968 Mar; 7(3):421-3. PubMed ID: 20068605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasonic sizing of short surface cracks.
    Masserey B; Mazza E
    Ultrasonics; 2007 Jun; 46(3):195-204. PubMed ID: 17367834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unfolded optical glory of spheroids: backscattering of laser light from freely rising spheroidal air bubbles in water.
    Arnott WP; Marston PL
    Appl Opt; 1991 Aug; 30(24):3429-42. PubMed ID: 20706408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimate for the effect of forward scattering on the measurement of extinction for particles by cavity ringdown spectroscopy.
    Smith GS
    Appl Opt; 2011 Oct; 50(28):5422-9. PubMed ID: 22016208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A generalized approach for efficient finite element modeling of elastodynamic scattering in two and three dimensions.
    Velichko A; Wilcox PD
    J Acoust Soc Am; 2010 Sep; 128(3):1004-14. PubMed ID: 20815437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams.
    Normatov A; Spektor B; Leviatan Y; Shamir J
    Opt Express; 2011 Apr; 19(9):8506-13. PubMed ID: 21643100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams.
    Ambrosio LA; Hernández-Figueroa HE
    Appl Opt; 2011 Aug; 50(22):4489-98. PubMed ID: 21833125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Propagation of finite cross-section laser beams in sea water.
    Yura HT
    Appl Opt; 1973 Jan; 12(1):108-15. PubMed ID: 20125239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.