These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20217478)

  • 21. Effects of sample geometry and electrode configuration on measured electrical resistivity of skeletal muscle.
    Kun S; Peura R
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):163-9. PubMed ID: 10721623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The selection of electromyographic needle electrodes.
    Joynt RL
    Arch Phys Med Rehabil; 1994 Mar; 75(3):251-8. PubMed ID: 8129574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of electrode area, contact impedance and boundary shape on EIT images.
    Boyle A; Adler A
    Physiol Meas; 2011 Jul; 32(7):745-54. PubMed ID: 21646710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biopsy Needle Integrated with Electrical Impedance Sensing Microelectrode Array towards Real-time Needle Guidance and Tissue Discrimination.
    Park J; Choi WM; Kim K; Jeong WI; Seo JB; Park I
    Sci Rep; 2018 Jan; 8(1):264. PubMed ID: 29321531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of electrode-tissue interface impedance for improvement of a transcutaneous data transmission using human body as transmission medium.
    Okamoto E; Kato Y; Kikuchi S; Mitamura Y
    Biomed Mater Eng; 2014; 24(4):1735-42. PubMed ID: 24948457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrode-electrolyte interface properties in implantation conditions.
    Riistama J; Lekkala J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6021-4. PubMed ID: 17946736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated measurement of intestinal mucosa electrical parameters using a new digital clamp.
    Mathieu J; Mammar S; Eto B
    Methods Find Exp Clin Pharmacol; 2008 Oct; 30(8):591-8. PubMed ID: 19088943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The efficacy of a two needle electrode technique in percutaneous radiofrequency rhizotomy:An investigational laboratory study in an animal model.
    Derby R; Lee CH
    Pain Physician; 2006 Jul; 9(3):207-13. PubMed ID: 16886029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Choosing electrodes for deep brain stimulation experiments--electrochemical considerations.
    Gimsa J; Habel B; Schreiber U; van Rienen U; Strauss U; Gimsa U
    J Neurosci Methods; 2005 Mar; 142(2):251-65. PubMed ID: 15698665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifrequency characteristics of disposable and nondisposable EMG needle electrodes.
    Ackmann JJ; Lomas JN; Hoffmann RG; Wertsch JJ
    Muscle Nerve; 1993 Jun; 16(6):616-23. PubMed ID: 8502259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled metallic nanopillars for low impedance biomedical electrode.
    Gardner CJ; Trisnadi J; Kim TK; Brammer K; Reiss L; Chen LH; Jin S
    Acta Biomater; 2014 May; 10(5):2296-303. PubMed ID: 24384124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical corrosion of STS304 acupuncture needles by electrical stimulation.
    Hwang HS; Yang EJ; Ryu YH; Lee MS; Choi SM
    J Acupunct Meridian Stud; 2010 Jun; 3(2):89-94. PubMed ID: 20633521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of electrode geometry and cell location on single-cell impedance measurement.
    Wang JW; Wang MH; Jang LS
    Biosens Bioelectron; 2010 Feb; 25(6):1271-6. PubMed ID: 19926465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical stimulation and electrode properties. Part 2: pure metal electrodes.
    Stevenson M; Baylor K; Netherton BL; Stecker MM
    Am J Electroneurodiagnostic Technol; 2010 Dec; 50(4):263-96. PubMed ID: 21313789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of temperature, electrical conductivity, power and pH on ascorbic acid degradation kinetics during ohmic heating using stainless steel electrodes.
    Assiry AM; Sastry SK; Samaranayake CP
    Bioelectrochemistry; 2006 Jan; 68(1):7-13. PubMed ID: 15886066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrode contact impedance sensitivity to variations in geometry.
    Cardu R; Leong PH; Jin CT; McEwan A
    Physiol Meas; 2012 May; 33(5):817-30. PubMed ID: 22531168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lock-in Amplifier-Based Impedance Detection of Tissue Type Using a Monopolar Injection Needle.
    Kim J; Abbasi MA; Kim T; Park KD; Cho S
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31652819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The polarization impedance of common electrode metals operated at low current density.
    Ragheb T; Geddes LA
    Ann Biomed Eng; 1991; 19(2):151-63. PubMed ID: 2048774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
    Nasehi Tehrani J; Oh TI; Jin C; Thiagalingam A; McEwan A
    Comput Biol Med; 2012 Nov; 42(11):1122-32. PubMed ID: 23017828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.