BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20217559)

  • 1. Transfection of siRNAs in multiple myeloma cell lines.
    Brito JL; Brown N; Morgan GJ
    Methods Mol Biol; 2010; 623():299-309. PubMed ID: 20217559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptolysin-O reversible permeabilisation is an effective method to transfect siRNAs into myeloma cells.
    Brito JL; Davies FE; Gonzalez D; Morgan GJ
    J Immunol Methods; 2008 Apr; 333(1-2):147-55. PubMed ID: 18299137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective gene suppression using small interfering RNA in hard-to-transfect human T cells.
    Yin J; Ma Z; Selliah N; Shivers DK; Cron RQ; Finkel TH
    J Immunol Methods; 2006 May; 312(1-2):1-11. PubMed ID: 16603179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Specific inhibition of hTERT gene expression by short interfering RNAs in gastric cancer SGC7901 cell].
    Ma JP; Zhan WH; Wang JP; Peng JS; Gao JS; Yin QW
    Zhonghua Wai Ke Za Zhi; 2004 Nov; 42(22):1372-6. PubMed ID: 15634407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing.
    Luo Q; Kang Q; Song WX; Luu HH; Luo X; An N; Luo J; Deng ZL; Jiang W; Yin H; Chen J; Sharff KA; Tang N; Bennett E; Haydon RC; He TC
    Gene; 2007 Jun; 395(1-2):160-9. PubMed ID: 17449199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening of effective siRNAs from RNAi libraries delivered via bacterial invasion.
    Zhao HF; L'Abbé D; Jolicoeur N; Wu M; Li Z; Yu Z; Shen SH
    Nat Methods; 2005 Dec; 2(12):967-73. PubMed ID: 16299483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes.
    Werth S; Urban-Klein B; Dai L; Höbel S; Grzelinski M; Bakowsky U; Czubayko F; Aigner A
    J Control Release; 2006 May; 112(2):257-70. PubMed ID: 16574264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNAi microarray analysis in cultured mammalian cells.
    Mousses S; Caplen NJ; Cornelison R; Weaver D; Basik M; Hautaniemi S; Elkahloun AG; Lotufo RA; Choudary A; Dougherty ER; Suh E; Kallioniemi O
    Genome Res; 2003 Oct; 13(10):2341-7. PubMed ID: 14525932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene silencing in human embryonic stem cells by RNA interference.
    Rassouli FB; Matin MM
    Biochem Biophys Res Commun; 2009 Dec; 390(4):1106-10. PubMed ID: 19833094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing.
    Myers JW; Jones JT; Meyer T; Ferrell JE
    Nat Biotechnol; 2003 Mar; 21(3):324-8. PubMed ID: 12592410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and cost-effective method to transfect small interfering RNAs into pancreatic cancer cell lines using polyethylenimine.
    Wirth M; Fritsche P; Stojanovic N; Brandl M; Jaeckel S; Schmid RM; Saur D; Schneider G
    Pancreas; 2011 Jan; 40(1):144-50. PubMed ID: 20938367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Detection of RNA interference in nasopharyngeal carcinoma cell lines using reporter genes].
    Yin ZH; Ren CP; Li F; Jiang WH; Yang XY; Feng XL; Yao KT
    Ai Zheng; 2005 Mar; 24(3):371-5. PubMed ID: 15757546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA interference (RNAi) in hematology.
    Scherr M; Steinmann D; Eder M
    Ann Hematol; 2004 Jan; 83(1):1-8. PubMed ID: 14574462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression silencing with 'specific' small interfering RNA goes beyond specificity - a study of key parameters to take into account in the onset of small interfering RNA off-target effects.
    Vankoningsloo S; de Longueville F; Evrard S; Rahier P; Houbion A; Fattaccioli A; Gastellier M; Remacle J; Raes M; Renard P; Arnould T
    FEBS J; 2008 Jun; 275(11):2738-53. PubMed ID: 18422646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fas-ligand gene silencing in basal cell carcinoma tissue with small interfering RNA.
    Ji J; Wernli M; Mielgo A; Buechner SA; Erb P
    Gene Ther; 2005 Apr; 12(8):678-84. PubMed ID: 15660112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing and utilization of siRNAs targeting RNA binding proteins.
    Kim DH; Behlke M; Rossi JJ
    Methods Mol Biol; 2008; 488():367-81. PubMed ID: 18982303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells.
    Hoelters J; Ciccarella M; Drechsel M; Geissler C; Gülkan H; Böcker W; Schieker M; Jochum M; Neth P
    J Gene Med; 2005 Jun; 7(6):718-28. PubMed ID: 15712343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in RNA interference in neuroendocrine PC12 cell lines stably transfected with an shRNA plasmid.
    Cahill AL; Moore JM; Sabar FI; Harkins AB
    J Neurosci Methods; 2007 Nov; 166(2):236-40. PubMed ID: 17767962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional targeting of small interfering RNAs into cancer cells.
    Huynh T; Wälchli S; Sioud M
    Biochem Biophys Res Commun; 2006 Dec; 350(4):854-9. PubMed ID: 17034763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA.
    Amarzguioui M; Lundberg P; Cantin E; Hagstrom J; Behlke MA; Rossi JJ
    Nat Protoc; 2006; 1(2):508-17. PubMed ID: 17406276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.