BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20217591)

  • 1. Nanoshells for photothermal cancer therapy.
    Morton JG; Day ES; Halas NJ; West JL
    Methods Mol Biol; 2010; 624():101-17. PubMed ID: 20217591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal nanoshells.
    Hirsch LR; Gobin AM; Lowery AR; Tam F; Drezek RA; Halas NJ; West JL
    Ann Biomed Eng; 2006 Jan; 34(1):15-22. PubMed ID: 16528617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanocages for cancer imaging and therapy.
    Au L; Chen J; Wang LV; Xia Y
    Methods Mol Biol; 2010; 624():83-99. PubMed ID: 20217590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of gold nanorods for cancer imaging and photothermal therapy.
    Huang X; El-Sayed IH; El-Sayed MA
    Methods Mol Biol; 2010; 624():343-57. PubMed ID: 20217607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EphrinA I-targeted nanoshells for photothermal ablation of prostate cancer cells.
    Gobin AM; Moon JJ; West JL
    Int J Nanomedicine; 2008; 3(3):351-8. PubMed ID: 18990944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy.
    Gobin AM; Lee MH; Halas NJ; James WD; Drezek RA; West JL
    Nano Lett; 2007 Jul; 7(7):1929-34. PubMed ID: 17550297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near infrared laser-tissue welding using nanoshells as an exogenous absorber.
    Gobin AM; O'Neal DP; Watkins DM; Halas NJ; Drezek RA; West JL
    Lasers Surg Med; 2005 Aug; 37(2):123-9. PubMed ID: 16047329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods.
    Cheng FY; Chen CT; Yeh CS
    Nanotechnology; 2009 Oct; 20(42):425104. PubMed ID: 19779243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model.
    Schwartz JA; Shetty AM; Price RE; Stafford RJ; Wang JC; Uthamanthil RK; Pham K; McNichols RJ; Coleman CL; Payne JD
    Cancer Res; 2009 Feb; 69(4):1659-67. PubMed ID: 19208847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanorods: multifunctional agents for cancer imaging and therapy.
    Wei A; Leonov AP; Wei Q
    Methods Mol Biol; 2010; 624():119-30. PubMed ID: 20217592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoshell-enabled photonics-based imaging and therapy of cancer.
    Loo C; Lin A; Hirsch L; Lee MH; Barton J; Halas N; West J; Drezek R
    Technol Cancer Res Treat; 2004 Feb; 3(1):33-40. PubMed ID: 14750891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast ultrasound-guided photothermal therapy using gold nanoshelled microcapsules in breast cancer.
    Wang S; Dai Z; Ke H; Qu E; Qi X; Zhang K; Wang J
    Eur J Radiol; 2014 Jan; 83(1):117-22. PubMed ID: 24268740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NIR triggered glycosylated gold nanoshell as a photothermal agent on melanoma cancer cells.
    Nouri S; Mohammadi E; Mehravi B; Majidi F; Ashtari K; Neshasteh-Riz A; Einali S
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):2316-2324. PubMed ID: 31184218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy.
    Song J; Yang X; Yang Z; Lin L; Liu Y; Zhou Z; Shen Z; Yu G; Dai Y; Jacobson O; Munasinghe J; Yung B; Teng GJ; Chen X
    ACS Nano; 2017 Jun; 11(6):6102-6113. PubMed ID: 28605594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic delivery of silica-gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic.
    Paithankar D; Hwang BH; Munavalli G; Kauvar A; Lloyd J; Blomgren R; Faupel L; Meyer T; Mitragotri S
    J Control Release; 2015 May; 206():30-6. PubMed ID: 25747145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Evaluation of Degradable and Cost-Effective Plasmonic Nanoshells for Localized Photothermolysis of Cancer Cells.
    Chauhan DS; Reddy BPK; Mishra SK; Prasad R; Dhanka M; Vats M; Ravichandran G; Poojari D; Mhatre O; De A; Srivastava R
    Langmuir; 2019 Jun; 35(24):7805-7815. PubMed ID: 31090425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy.
    Cheng L; Yang K; Li Y; Zeng X; Shao M; Lee ST; Liu Z
    Biomaterials; 2012 Mar; 33(7):2215-22. PubMed ID: 22169825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.