BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20217608)

  • 21. In situ detection of live cancer cells by using bioprobes based on Au nanoparticles.
    Yang J; Eom K; Lim EK; Park J; Kang Y; Yoon DS; Na S; Koh EK; Suh JS; Huh YM; Kwon TY; Haam S
    Langmuir; 2008 Nov; 24(21):12112-5. PubMed ID: 18826263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting of nanoparticles: folate receptor.
    Kularatne SA; Low PS
    Methods Mol Biol; 2010; 624():249-65. PubMed ID: 20217601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, characterization, and functionalization of gold nanoparticles for cancer imaging.
    Craig GA; Allen PJ; Mason MD
    Methods Mol Biol; 2010; 624():177-93. PubMed ID: 20217596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanocages for cancer imaging and therapy.
    Au L; Chen J; Wang LV; Xia Y
    Methods Mol Biol; 2010; 624():83-99. PubMed ID: 20217590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and biological evaluation of paclitaxel-C225 conjugate as a model for targeted drug delivery.
    Safavy A; Bonner JA; Waksal HW; Buchsbaum DJ; Gillespie GY; Khazaeli MB; Arani R; Chen DT; Carpenter M; Raisch KP
    Bioconjug Chem; 2003; 14(2):302-10. PubMed ID: 12643740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue.
    Eck W; Craig G; Sigdel A; Ritter G; Old LJ; Tang L; Brennan MF; Allen PJ; Mason MD
    ACS Nano; 2008 Nov; 2(11):2263-72. PubMed ID: 19206392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular-targeted therapy for cancer and nanotechnology.
    Hochwald SN
    Methods Mol Biol; 2010; 624():11-23. PubMed ID: 20217586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting.
    Tseng CL; Wang TW; Dong GC; Yueh-Hsiu Wu S; Young TH; Shieh MJ; Lou PJ; Lin FH
    Biomaterials; 2007 Sep; 28(27):3996-4005. PubMed ID: 17570484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy.
    Chen J; Irudayaraj J
    ACS Nano; 2009 Dec; 3(12):4071-9. PubMed ID: 19891423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles.
    Kong T; Zeng J; Wang X; Yang X; Yang J; McQuarrie S; McEwan A; Roa W; Chen J; Xing JZ
    Small; 2008 Sep; 4(9):1537-43. PubMed ID: 18712753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermoresponsive and biodegradable linear-dendritic nanoparticles for targeted and sustained release of a pro-apoptotic drug.
    Stover TC; Kim YS; Lowe TL; Kester M
    Biomaterials; 2008 Jan; 29(3):359-69. PubMed ID: 17964645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting.
    Zhang Z; Chen J; Ding L; Jin H; Lovell JF; Corbin IR; Cao W; Lo PC; Yang M; Tsao MS; Luo Q; Zheng G
    Small; 2010 Feb; 6(3):430-7. PubMed ID: 19957284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells.
    Kohler N; Sun C; Wang J; Zhang M
    Langmuir; 2005 Sep; 21(19):8858-64. PubMed ID: 16142971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-epidermal growth factor receptor (anti-EGFR) antibody conjugated fluorescent nanoparticles probe for breast cancer imaging.
    Hun X; Zhang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(2):410-4. PubMed ID: 19620022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer.
    Yang J; Lee CH; Ko HJ; Suh JS; Yoon HG; Lee K; Huh YM; Haam S
    Angew Chem Int Ed Engl; 2007; 46(46):8836-9. PubMed ID: 17943947
    [No Abstract]   [Full Text] [Related]  

  • 36. Possibility of active targeting to tumor by local hyperthermia with temperature-sensitive nanoparticles.
    Li J; Wang B; Liu P
    Med Hypotheses; 2008 Aug; 71(2):249-51. PubMed ID: 18455320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells.
    Li J; Wang X; Wang C; Chen B; Dai Y; Zhang R; Song M; Lv G; Fu D
    ChemMedChem; 2007 Mar; 2(3):374-8. PubMed ID: 17206735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy.
    Raoof M; Corr SJ; Kaluarachchi WD; Massey KL; Briggs K; Zhu C; Cheney MA; Wilson LJ; Curley SA
    Nanomedicine; 2012 Oct; 8(7):1096-105. PubMed ID: 22349096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders.
    Muthu MS; Singh S
    Nanomedicine (Lond); 2009 Jan; 4(1):105-18. PubMed ID: 19093899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold-Gold Sulfide nanoparticles intensify thermal effects of radio frequency electromagnetic field.
    Sadeghi HR; Toosi MH; Soudmand S; Sadoughi HR; Sazgarnia A
    J Exp Ther Oncol; 2014; 10(4):285-91. PubMed ID: 25509984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.