These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20217615)

  • 1. A capture coupling method for the covalent immobilization of hexahistidine tagged proteins for surface plasmon resonance.
    Kimple AJ; Muller RE; Siderovski DP; Willard FS
    Methods Mol Biol; 2010; 627():91-100. PubMed ID: 20217615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-affinity immobilization of proteins using biotin- and GST-based coupling strategies.
    Hutsell SQ; Kimple RJ; Siderovski DP; Willard FS; Kimple AJ
    Methods Mol Biol; 2010; 627():75-90. PubMed ID: 20217614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amine coupling through EDC/NHS: a practical approach.
    Fischer MJ
    Methods Mol Biol; 2010; 627():55-73. PubMed ID: 20217613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of a transmembrane protein into a supported 3D-matrix of liposomes for SPR studies.
    Granéli A
    Methods Mol Biol; 2010; 627():237-48. PubMed ID: 20217626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent affixation of histidine-tagged proteins tethered onto Ni-nitrilotriacetic acid sensors for enhanced surface plasmon resonance detection of small molecule drugs and kinetic studies of antibody/antigen interactions.
    Wang X; Liu Q; Tan X; Liu L; Zhou F
    Analyst; 2019 Jan; 144(2):587-593. PubMed ID: 30427328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a metal-chelated plasmonic interface for the linking of His-peptides with a droplet-based surface plasmon resonance read-off scheme.
    Maalouli N; Gouget-Laemmel AC; Pinchemel B; Bouazaoui M; Chazalviel JN; Ozanam F; Yang Y; Burkhard P; Boukherroub R; Szunerits S
    Langmuir; 2011 May; 27(9):5498-505. PubMed ID: 21480606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free, real-time interaction and adsorption analysis 1: surface plasmon resonance.
    Fee CJ
    Methods Mol Biol; 2013; 996():287-312. PubMed ID: 23504431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of material properties upon immobilization of histidine-tagged protein on Ni-Co coated chip.
    Chang YJ; Ho CY; Chang CH
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():369-73. PubMed ID: 24582262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative real-time imaging of protein-protein interactions by LSPR detection with micropatterned gold nanoparticles.
    Bhagawati M; You C; Piehler J
    Anal Chem; 2013 Oct; 85(20):9564-71. PubMed ID: 24016060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative assessment of different histidine-tags for immobilization of protein onto surface plasmon resonance sensorchips.
    Fischer M; Leech AP; Hubbard RE
    Anal Chem; 2011 Mar; 83(5):1800-7. PubMed ID: 21314134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified peptide monolayer binding His-tagged biomolecules for small ligand screening with SPR biosensors.
    Bolduc OR; Lambert-Lanteigne P; Colin DY; Zhao SS; Proulx C; Boeglin D; Lubell WD; Pelletier JN; Féthière J; Ong H; Masson JF
    Analyst; 2011 Aug; 136(15):3142-8. PubMed ID: 21698315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring binding of S100 proteins to RAGE by surface plasmon resonance.
    Leclerc E
    Methods Mol Biol; 2013; 963():201-13. PubMed ID: 23296613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific peptide and protein immobilization on surface plasmon resonance chips via strain-promoted cycloaddition.
    Wammes AE; Fischer MJ; de Mol NJ; van Eldijk MB; Rutjes FP; van Hest JC; van Delft FL
    Lab Chip; 2013 May; 13(10):1863-7. PubMed ID: 23552823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors.
    Hu W; Li CM; Dong H
    Anal Chim Acta; 2008 Dec; 630(1):67-74. PubMed ID: 19068327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring antibody-antigen binding kinetics using surface plasmon resonance.
    Hearty S; Leonard P; O'Kennedy R
    Methods Mol Biol; 2012; 907():411-42. PubMed ID: 22907366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of biotinylated hGBP1 in a defined orientation on surfaces is crucial for uniform interaction with analyte proteins and catalytic activity.
    Syguda A; Kerstan A; Ladnorg T; Stüben F; Wöll C; Herrmann C
    Langmuir; 2012 Apr; 28(15):6411-8. PubMed ID: 22458356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring Antibody-Antigen Binding Kinetics Using Surface Plasmon Resonance.
    Hearty S; Leonard P; Ma H; O'Kennedy R
    Methods Mol Biol; 2018; 1827():421-455. PubMed ID: 30196510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-immobilization of biological components on gold-coated chips for measurements using surface plasmon resonance (SPR) and a quartz crystal microbalance (QCM).
    Tsuzuki S; Wada A; Ito Y
    Biotechnol Bioeng; 2009 Feb; 102(3):700-7. PubMed ID: 18989902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of surface plasmon resonance spectroscopy to study G-protein coupled receptor signalling.
    Komolov KE; Koch KW
    Methods Mol Biol; 2010; 627():249-60. PubMed ID: 20217627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of antibody immobilization strategies in detection of Vibrio cholerae by surface plasmon resonance.
    Taheri RA; Rezayan AH; Rahimi F; Mohammadnejad J; Kamali M
    Biointerphases; 2016 Dec; 11(4):041006. PubMed ID: 27923270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.