These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20217828)

  • 1. Surface-energy generator of single-walled carbon nanotubes and usage in a self-powered system.
    Liu Z; Zheng K; Hu L; Liu J; Qiu C; Zhou H; Huang H; Yang H; Li M; Gu C; Xie S; Qiao L; Sun L
    Adv Mater; 2010 Mar; 22(9):999-1003. PubMed ID: 20217828
    [No Abstract]   [Full Text] [Related]  

  • 2. Surface energy heterogeneity and heterogeneous adsorption of benzene on double-walled carbon nanotubes.
    Shim WG; Lee MJ; Kang HC; Kim C; Lee JW; Kim SC; Moon H
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3896-901. PubMed ID: 18047083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton energy transfer in pairs of single-walled carbon nanotubes.
    Qian H; Georgi C; Anderson N; Green AA; Hersam MC; Novotny L; Hartschuh A
    Nano Lett; 2008 May; 8(5):1363-7. PubMed ID: 18366189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bound excitons in metallic single-walled carbon nanotubes.
    Deslippe J; Spataru CD; Prendergast D; Louie SG
    Nano Lett; 2007 Jun; 7(6):1626-30. PubMed ID: 17508770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes.
    Tsyboulski DA; Rocha JD; Bachilo SM; Cognet L; Weisman RB
    Nano Lett; 2007 Oct; 7(10):3080-5. PubMed ID: 17880144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi scale theoretical study of Li+ interaction with carbon nanotubes.
    Mpourmpakis G; Tylianakis E; Papanikolaou D; Froudakis GE
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3731-5. PubMed ID: 17256322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen.
    Ducati C; Koziol K; Friedrichs S; Yates TJ; Shaffer MS; Midgley PA; Windle AH
    Small; 2006 Jun; 2(6):774-84. PubMed ID: 17193122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling nonequilibrium phonon populations in single-walled carbon nanotubes.
    Steiner M; Qian H; Hartschuh A; Meixner AJ
    Nano Lett; 2007 Aug; 7(8):2239-42. PubMed ID: 17629345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide.
    Ju SY; Doll J; Sharma I; Papadimitrakopoulos F
    Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling a suspended nanotube oscillator.
    Ustünel H; Roundy D; Arias TA
    Nano Lett; 2005 Mar; 5(3):523-6. PubMed ID: 15755107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.
    Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary effect of multi-walled carbon nanotubes suspension in composite processing.
    Fan Z; Advani SG
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1669-78. PubMed ID: 18572564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.
    Einarsson E; Kadowaki M; Ogura K; Okawa J; Xiang R; Zhang Z; Yamamoto T; Ikuhara Y; Maruyama S
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6093-8. PubMed ID: 19198350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcing mechanisms of single-walled carbon nanotube-reinforced polymer composites.
    Li X; Gao H; Scrivens WA; Fei D; Xu X; Sutton MA; Reynolds AP; Myrick ML
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2309-17. PubMed ID: 17663245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation.
    Stolojan V; Tison Y; Chen GY; Silva R
    Nano Lett; 2006 Sep; 6(9):1837-41. PubMed ID: 16967987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length.
    Yang QH; Wang Q; Gale N; Oton CJ; Cui L; Nandhakumar IS; Zhu Z; Tang Z; Brown T; Loh WH
    Nanotechnology; 2009 May; 20(19):195603. PubMed ID: 19420642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-organized nanotube serpentines.
    Geblinger N; Ismach A; Joselevich E
    Nat Nanotechnol; 2008 Apr; 3(4):195-200. PubMed ID: 18654502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-activated surfactants for dispersion of carbon nanotubes.
    Cousins BG; Das AK; Sharma R; Li Y; McNamara JP; Hillier IH; Kinloch IA; Ulijn RV
    Small; 2009 Mar; 5(5):587-90. PubMed ID: 19242950
    [No Abstract]   [Full Text] [Related]  

  • 20. The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes.
    Ding F; Larsson P; Larsson JA; Ahuja R; Duan H; Rosén A; Bolton K
    Nano Lett; 2008 Feb; 8(2):463-8. PubMed ID: 18162001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.