These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 20218508)
21. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. de Snoo GR; de Wit PJ Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699 [TBL] [Abstract][Full Text] [Related]
22. Drift studies--comparison of field and wind tunnel experiments. Stadler R; Regenauer W Commun Agric Appl Biol Sci; 2005; 70(4):971-3. PubMed ID: 16628944 [TBL] [Abstract][Full Text] [Related]
23. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS. Salah SO; Massinon M; De Cock N; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2015; 80(3):303-12. PubMed ID: 27141728 [TBL] [Abstract][Full Text] [Related]
24. Buffer zone and windbreak effects on spray drift deposition in a simulated wetland. Brown RB; Carter MH; Stephenson GR Pest Manag Sci; 2004 Nov; 60(11):1085-90. PubMed ID: 15532682 [TBL] [Abstract][Full Text] [Related]
25. Investigation on downwind short-range transport of pesticides after application in agricultural crops. Siebers J; Binner R; Wittich KP Chemosphere; 2003 May; 51(5):397-407. PubMed ID: 12598005 [TBL] [Abstract][Full Text] [Related]
26. Effect of sprayer settings on spray drift during pesticide application in poplar plantations (Populus spp.). Grella M; Marucco P; Manzone M; Gallart M; Balsari P Sci Total Environ; 2017 Feb; 578():427-439. PubMed ID: 27836339 [TBL] [Abstract][Full Text] [Related]
27. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400 [TBL] [Abstract][Full Text] [Related]
28. Low-drift nozzles vs. standard nozzles for pesticide application in the biological efficacy trials of pesticides in apple pest and disease control. Doruchowski G; Świechowski W; Masny S; Maciesiak A; Tartanus M; Bryk H; Hołownicki R Sci Total Environ; 2017 Jan; 575():1239-1246. PubMed ID: 27720255 [TBL] [Abstract][Full Text] [Related]
29. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related]
30. Optimisation of sequence and orientation for used nozzles based on few, full boom distribution measurements. Maertens W; Nuyttens D; Sonck B Commun Agric Appl Biol Sci; 2005; 70(4):989-95. PubMed ID: 16628947 [TBL] [Abstract][Full Text] [Related]
31. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 1. Classification using indirect methods. Torrent X; Gregorio E; Douzals JP; Tinet C; Rosell-Polo JR; Planas S Sci Total Environ; 2019 Nov; 692():1322-1333. PubMed ID: 31248581 [TBL] [Abstract][Full Text] [Related]
32. Spray drift as influenced by meteorological and technical factors. Arvidsson T; Bergström L; Kreuger J Pest Manag Sci; 2011 May; 67(5):586-98. PubMed ID: 21472973 [TBL] [Abstract][Full Text] [Related]
33. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605 [TBL] [Abstract][Full Text] [Related]
34. Near-field air concentrations of pesticides in potato agriculture in Prince Edward Island. Garron CA; Davis KC; Ernst WR Pest Manag Sci; 2009 Jun; 65(6):688-96. PubMed ID: 19278022 [TBL] [Abstract][Full Text] [Related]
35. Agrochemical spray drift; assessment and mitigation--a review. Felsot AS; Unsworth JB; Linders JB; Roberts G; Rautman D; Harris C; Carazo E J Environ Sci Health B; 2011; 46(1):1-23. PubMed ID: 20981606 [TBL] [Abstract][Full Text] [Related]
36. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
37. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469 [TBL] [Abstract][Full Text] [Related]
38. Simulation of drift of pesticides: development and validation of a model. Brusselman E; Spanoghe P; Van der Meeren P; Gabriels D; Steurbaut W Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):749-58. PubMed ID: 15151311 [TBL] [Abstract][Full Text] [Related]
39. Determining the drift potential of Venturi nozzles compared with standard nozzles across three insecticide spray solutions in a wind tunnel. Ferguson JC; Chechetto RG; O'Donnell CC; Dorr GJ; Moore JH; Baker GJ; Powis KJ; Hewitt AJ Pest Manag Sci; 2016 Aug; 72(8):1460-6. PubMed ID: 26732308 [TBL] [Abstract][Full Text] [Related]
40. Determination of spray drift and buffer zones in 3D crops using the ISO standard and new LiDAR methodologies. Torrent X; Gregorio E; Rosell-Polo JR; Arnó J; Peris M; van de Zande JC; Planas S Sci Total Environ; 2020 Apr; 714():136666. PubMed ID: 31986387 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]