These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20218539)

  • 1. Effects of sorption on the rejection of trace organic contaminants during nanofiltration.
    Steinle-Darling E; Litwiller E; Reinhard M
    Environ Sci Technol; 2010 Apr; 44(7):2592-8. PubMed ID: 20218539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofiltration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of perfluorochemicals.
    Steinle-Darling E; Reinhard M
    Environ Sci Technol; 2008 Jul; 42(14):5292-7. PubMed ID: 18754383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes.
    Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G
    Water Res; 2009 May; 43(9):2349-62. PubMed ID: 19303127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study.
    Bellona C; Drewes JE
    Water Res; 2007 Sep; 41(17):3948-58. PubMed ID: 17582458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane.
    Wang L; Albasi C; Faucet-Marquis V; Pfohl-Leszkowicz A; Dorandeu C; Marion B; Causserand C
    Water Res; 2009 Sep; 43(17):4115-22. PubMed ID: 19592068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of trihalomethanes from drinking water by nanofiltration membranes.
    Uyak V; Koyuncu I; Oktem I; Cakmakci M; Toroz I
    J Hazard Mater; 2008 Apr; 152(2):789-94. PubMed ID: 17768007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.
    Kim TU; Drewes JE; Scott Summers R; Amy GL
    Water Res; 2007 Sep; 41(17):3977-88. PubMed ID: 17631378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes.
    Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G
    Water Res; 2010 Jan; 44(2):373-84. PubMed ID: 19616272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofiltration processes applied to the removal of phenyl-ureas in natural waters.
    Benítez FJ; Acero JL; Real FJ; García C
    J Hazard Mater; 2009 Jun; 165(1-3):714-23. PubMed ID: 19054613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration.
    Comerton AM; Andrews RC; Bagley DM
    Water Res; 2009 Feb; 43(3):613-22. PubMed ID: 19046596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of mixed liquor pH on the removal of trace organic contaminants in a membrane bioreactor.
    Tadkaew N; Sivakumar M; Khan SJ; McDonald JA; Nghiem LD
    Bioresour Technol; 2010 Mar; 101(5):1494-500. PubMed ID: 19864128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling.
    Her N; Amy G; Park HR; Song M
    Water Res; 2004 Mar; 38(6):1427-38. PubMed ID: 15016519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge.
    Grünheid S; Amy G; Jekel M
    Water Res; 2005 Sep; 39(14):3219-28. PubMed ID: 16024062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New PVDF membranes: The effect of plasma surface modification on retention in nanofiltration of aqueous solution containing organic compounds.
    Buonomenna MG; Lopez LC; Favia P; d'Agostino R; Gordano A; Drioli E
    Water Res; 2007 Nov; 41(19):4309-16. PubMed ID: 17631942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeability of low molecular weight organics through nanofiltration membranes.
    Meylan S; Hammes F; Traber J; Salhi E; von Gunten U; Pronk W
    Water Res; 2007 Sep; 41(17):3968-76. PubMed ID: 17640703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemisorption of estrone in nylon microfiltration membranes: Adsorption mechanism and potential use for estrone removal from water.
    Han J; Qiu W; Hu J; Gao W
    Water Res; 2012 Mar; 46(3):873-81. PubMed ID: 22189293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dichloroaniline retention by nanofiltration membranes.
    Causserand C; Aimar P; Cravedi JP; Singlande E
    Water Res; 2005 Apr; 39(8):1594-600. PubMed ID: 15878032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental factors determining the trace-level sorption of silver and thallium to soils.
    Jacobson AR; McBride MB; Baveye P; Steenhuis TS
    Sci Total Environ; 2005 Jun; 345(1-3):191-205. PubMed ID: 15919539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of reverse osmosis isolation on reactivity of naturally occurring dissolved organic matter in physicochemical processes.
    Kilduff JE; Mattaraj S; Wigton A; Kitis M; Karanfil T
    Water Res; 2004 Feb; 38(4):1026-36. PubMed ID: 14769423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.