These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20218541)

  • 1. Photocatalytic treatment of bioaerosols: impact of the reactor design.
    Josset S; Taranto J; Keller N; Keller V; Lett MC
    Environ Sci Technol; 2010 Apr; 44(7):2605-11. PubMed ID: 20218541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV-A photocatalytic treatment of Legionella pneumophila bacteria contaminated airflows through three-dimensional solid foam structured photocatalytic reactors.
    Josset S; Hajiesmaili S; Begin D; Edouard D; Pham-Huu C; Lett MC; Keller N; Keller V
    J Hazard Mater; 2010 Mar; 175(1-3):372-81. PubMed ID: 19892463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inactivation and removal of airborne Bacillus atrophaeus endospores from air circulation systems using UVC and HEPA filters.
    Luna VA; Cannons AC; Amuso PT; Cattani J
    J Appl Microbiol; 2008 Feb; 104(2):489-98. PubMed ID: 17927759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms.
    Josset S; Keller N; Lett MC; Ledoux MJ; Keller V
    Chem Soc Rev; 2008 Apr; 37(4):744-55. PubMed ID: 18362981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprocess of Kosa bioaerosols: effect of ultraviolet radiation on airborne bacteria within Kosa (Asian dust).
    Kobayashi F; Maki T; Kakikawa M; Yamada M; Puspitasari F; Iwasaka Y
    J Biosci Bioeng; 2015 May; 119(5):570-9. PubMed ID: 25735592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ultraviolet germicidal irradiation and swirling motion on airborne Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila under various relative humidities.
    Chang CW; Li SY; Huang SH; Huang CK; Chen YY; Chen CC
    Indoor Air; 2013 Feb; 23(1):74-84. PubMed ID: 22680348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.
    Hijnen WA; Beerendonk EF; Medema GJ
    Water Res; 2006 Jan; 40(1):3-22. PubMed ID: 16386286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV disinfection of indigenous aerobic spores: implications for UV reactor validation in unfiltered waters.
    Mamane-Gravetz H; Linden KG
    Water Res; 2004 Jul; 38(12):2898-906. PubMed ID: 15223284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection against UV disinfection of E. coli bacteria and B. subtilis spores ingested by C. elegans nematodes.
    Bichai F; Barbeau B; Payment P
    Water Res; 2009 Aug; 43(14):3397-406. PubMed ID: 19505708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH).
    Deloge-Abarkan M; Ha TL; Robine E; Zmirou-Navier D; Mathieu L
    J Environ Monit; 2007 Jan; 9(1):91-7. PubMed ID: 17213948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of microparticles on UV disinfection of indigenous aerobic spores.
    Caron E; Chevrefils G; Barbeau B; Payment P; Prévost M
    Water Res; 2007 Nov; 41(19):4546-56. PubMed ID: 17619049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The assessment of particle association and UV disinfection of wastewater using indigenous spore-forming bacteria.
    Li D; Craik SA; Smith DW; Belosevic M
    Water Res; 2009 Feb; 43(2):481-9. PubMed ID: 18996557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hybrid UV-thermal energy stimuli on inactivation of S. epidermidis and B. subtilis bacterial bioaerosols.
    Hwang GB; Jung JH; Jeong TG; Lee BU
    Sci Total Environ; 2010 Nov; 408(23):5903-9. PubMed ID: 20822796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation.
    Moeller R; Horneck G; Facius R; Stackebrandt E
    FEMS Microbiol Ecol; 2005 Jan; 51(2):231-6. PubMed ID: 16329871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores.
    Zhao J; Krishna V; Hua B; Moudgil B; Koopman B
    J Photochem Photobiol B; 2009 Feb; 94(2):96-100. PubMed ID: 19041258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV treatment of microorganisms on artificially-contaminated surfaces using excimer and microwave UV lamps.
    Christofi N; Misakyan MA; Matafonova GG; Barkhudarov EM; Batoev VB; Kossyi IA; Sharp J
    Chemosphere; 2008 Oct; 73(5):717-22. PubMed ID: 18727997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival of microorganisms on antimicrobial filters and the removal efficiency of bioaerosols in an environmental chamber.
    Kim SY; Kim M; Lee S; Lee J; Ko G
    J Microbiol Biotechnol; 2012 Sep; 22(9):1288-95. PubMed ID: 22814505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Aerosol disinfection of bacterial spores].
    Theilen U; Wilsberg FJ; Böhm R; Strauch D
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1987 Jun; 184(3-4):229-52. PubMed ID: 3116785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic inactivation of bioaerosols in a fixed-bed reactor with TiO
    Zacarías SM; Pirola S; Manassero A; Visuara ME; Alfano OM; Satuf ML
    Photochem Photobiol Sci; 2019 Apr; 18(4):884-890. PubMed ID: 30427037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.