These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20218603)

  • 1. Catalysis in the oil droplet/water interface for aromatic claisen rearrangement.
    Zheng Y; Zhang J
    J Phys Chem A; 2010 Apr; 114(12):4325-33. PubMed ID: 20218603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT study of the mechanisms of in water Au(I)-catalyzed tandem [3,3]-rearrangement/Nazarov reaction/[1,2]-hydrogen shift of enynyl acetates: a proton-transport catalysis strategy in the water-catalyzed [1,2]-hydrogen shift.
    Shi FQ; Li X; Xia Y; Zhang L; Yu ZX
    J Am Chem Soc; 2007 Dec; 129(50):15503-12. PubMed ID: 18027935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta.
    Bojin MD; Schlick T
    J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Claisen rearrangements: insight into solvent effects and "on water" reactivity from QM/MM simulations.
    Acevedo O; Armacost K
    J Am Chem Soc; 2010 Feb; 132(6):1966-75. PubMed ID: 20088521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.
    Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ
    Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanism and tautomeric equilibrium of 2-mercaptopyrimidine in the gas phase and in aqueous solution: a combined Monte Carlo and quantum mechanics study.
    Lima MC; Coutinho K; Canuto S; Rocha WR
    J Phys Chem A; 2006 Jun; 110(22):7253-61. PubMed ID: 16737277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent effects in chemical processes. water-assisted proton transfer reaction of pterin in aqueous environment.
    Jaramillo P; Coutinho K; Canuto S
    J Phys Chem A; 2009 Nov; 113(45):12485-95. PubMed ID: 19754044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel quantum mechanical/molecular mechanical method combined with the theory of energy representation: free energy calculation for the Beckmann rearrangement promoted by proton transfers in the supercritical water.
    Takahashi H; Tanabe K; Aketa M; Kishi R; Furukawa S; Nakano M
    J Chem Phys; 2007 Feb; 126(8):084508. PubMed ID: 17343459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydrogen trioxide clusters, (HOOOH)n (n = 2-4), and the hydrogen-bonded complexes of HOOOH with acetone and dimethyl ether: implications for the decomposition of HOOOH.
    Kovacic S; Koller J; Cerkovnik J; Tuttle T; Plesnicar B
    J Phys Chem A; 2008 Sep; 112(35):8129-35. PubMed ID: 18698743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited state proton transfer in guanine in the gas phase and in water solution: a theoretical study.
    Shukla MK; Leszczynski J
    J Phys Chem A; 2005 Sep; 109(34):7775-80. PubMed ID: 16834154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling H-bonding and solvent effects in the alkylation of pyrimidine bases by a prototype quinone methide: a DFT study.
    Freccero M; Di Valentin C; Sarzi-Amadè M;
    J Am Chem Soc; 2003 Mar; 125(12):3544-53. PubMed ID: 12643716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vapor-phase Beckmann rearrangement of oxime molecules over H-Faujasite zeolite.
    Sirijaraensre J; Limtrakul J
    Chemphyschem; 2006 Nov; 7(11):2424-32. PubMed ID: 17004280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent effects on glycine. I. A supermolecule modeling of tautomerization via intramolecular proton transfer.
    Balta B; Aviyente V
    J Comput Chem; 2003 Nov; 24(14):1789-802. PubMed ID: 12964198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism and product specificity of rubisco large subunit methyltransferase: QM/MM and MD investigations.
    Zhang X; Bruice TC
    Biochemistry; 2007 May; 46(18):5505-14. PubMed ID: 17429949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The azulene-to-naphthalene rearrangement revisited: a DFT study of intramolecular and radical-promoted mechanisms.
    Alder RW; East SP; Harvey JN; Oakley MT
    J Am Chem Soc; 2003 May; 125(18):5375-87. PubMed ID: 12720451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.