BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20218892)

  • 1. Validation of virtual reality simulation for percutaneous renal access training.
    Mishra S; Kurien A; Patel R; Patil P; Ganpule A; Muthu V; Sabnis RB; Desai M
    J Endourol; 2010 Apr; 24(4):635-40. PubMed ID: 20218892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A randomized, controlled, prospective study validating the acquisition of percutaneous renal collecting system access skills using a computer based hybrid virtual reality surgical simulator: phase I.
    Knudsen BE; Matsumoto ED; Chew BH; Johnson B; Margulis V; Cadeddu JA; Pearle MS; Pautler SE; Denstedt JD
    J Urol; 2006 Nov; 176(5):2173-8. PubMed ID: 17070287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training for percutaneous renal access on a virtual reality simulator.
    Zhang Y; Yu CF; Liu JS; Wang G; Zhu H; Na YQ
    Chin Med J (Engl); 2013; 126(8):1528-31. PubMed ID: 23595389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percutaneous renal access training: content validation comparison between a live porcine and a virtual reality (VR) simulation model.
    Mishra S; Kurien A; Ganpule A; Muthu V; Sabnis R; Desai M
    BJU Int; 2010 Dec; 106(11):1753-6. PubMed ID: 20950308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a virtual reality simulator to improve percutaneous renal access skills: a prospective study in urology trainees.
    Papatsoris AG; Shaikh T; Patel D; Bourdoumis A; Bach C; Buchholz N; Masood J; Junaid I
    Urol Int; 2012; 89(2):185-90. PubMed ID: 22777170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation for Percutaneous Renal Access: Where Are We?
    Noureldin YA; Andonian S
    J Endourol; 2017 Apr; 31(S1):S10-S19. PubMed ID: 27617641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Face, content and construct validity of a novel robotic surgery simulator.
    Hung AJ; Zehnder P; Patil MB; Cai J; Ng CK; Aron M; Gill IS; Desai MM
    J Urol; 2011 Sep; 186(3):1019-24. PubMed ID: 21784469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool.
    Ramos P; Montez J; Tripp A; Ng CK; Gill IS; Hung AJ
    BJU Int; 2014 May; 113(5):836-42. PubMed ID: 24224500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a novel non-biological bench model for the training of percutaneous renal access.
    Zhang Y; Yu CF; Jin SH; Li NC; Na YQ
    Int Braz J Urol; 2014; 40(1):87-92. PubMed ID: 24642154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a Novel Robotic Procedure Specific Simulation Platform: Partial Nephrectomy.
    Hung AJ; Shah SH; Dalag L; Shin D; Gill IS
    J Urol; 2015 Aug; 194(2):520-6. PubMed ID: 25801765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the RobotiX Mentor Robotic Surgery Simulator.
    Whittaker G; Aydin A; Raison N; Kum F; Challacombe B; Khan MS; Dasgupta P; Ahmed K
    J Endourol; 2016 Mar; 30(3):338-46. PubMed ID: 26576836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery.
    Kenney PA; Wszolek MF; Gould JJ; Libertino JA; Moinzadeh A
    Urology; 2009 Jun; 73(6):1288-92. PubMed ID: 19362352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Face and construct validity of a computer-based virtual reality simulator for ERCP.
    Bittner JG; Mellinger JD; Imam T; Schade RR; Macfadyen BV
    Gastrointest Endosc; 2010 Feb; 71(2):357-64. PubMed ID: 19922914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expert and construct validity of the Simbionix GI Mentor II endoscopy simulator for colonoscopy.
    Koch AD; Buzink SN; Heemskerk J; Botden SM; Veenendaal R; Jakimowicz JJ; Schoon EJ
    Surg Endosc; 2008 Jan; 22(1):158-62. PubMed ID: 17516114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of basic endoscopic performance using a virtual reality simulator.
    Wilhelm DM; Ogan K; Roehrborn CG; Cadeddu JA; Pearle MS
    J Am Coll Surg; 2002 Nov; 195(5):675-81. PubMed ID: 12437255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity.
    Kang SG; Cho S; Kang SH; Haidar AM; Samavedi S; Palmer KJ; Patel VR; Cheon J
    Urology; 2014 Aug; 84(2):345-50. PubMed ID: 24975707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmented reality simulator for ultrasound-guided percutaneous renal access.
    Mu Y; Hocking D; Wang ZT; Garvin GJ; Eagleson R; Peters TM
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):749-757. PubMed ID: 32314227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Face validity, construct validity and training benefits of a virtual reality TURP simulator.
    Bright E; Vine S; Wilson MR; Masters RS; McGrath JS
    Int J Surg; 2012; 10(3):163-6. PubMed ID: 22366646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holmium Laser Enucleation of the Prostate: Simulation-Based Training Curriculum and Validation.
    Kuronen-Stewart C; Ahmed K; Aydin A; Cynk M; Miller P; Challacombe B; Khan MS; Dasgupta P; Aho TF; Popert R
    Urology; 2015 Sep; 86(3):639-46. PubMed ID: 26126694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.