These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A randomized, controlled, prospective study validating the acquisition of percutaneous renal collecting system access skills using a computer based hybrid virtual reality surgical simulator: phase I. Knudsen BE; Matsumoto ED; Chew BH; Johnson B; Margulis V; Cadeddu JA; Pearle MS; Pautler SE; Denstedt JD J Urol; 2006 Nov; 176(5):2173-8. PubMed ID: 17070287 [TBL] [Abstract][Full Text] [Related]
3. Training for percutaneous renal access on a virtual reality simulator. Zhang Y; Yu CF; Liu JS; Wang G; Zhu H; Na YQ Chin Med J (Engl); 2013; 126(8):1528-31. PubMed ID: 23595389 [TBL] [Abstract][Full Text] [Related]
4. Percutaneous renal access training: content validation comparison between a live porcine and a virtual reality (VR) simulation model. Mishra S; Kurien A; Ganpule A; Muthu V; Sabnis R; Desai M BJU Int; 2010 Dec; 106(11):1753-6. PubMed ID: 20950308 [TBL] [Abstract][Full Text] [Related]
5. Use of a virtual reality simulator to improve percutaneous renal access skills: a prospective study in urology trainees. Papatsoris AG; Shaikh T; Patel D; Bourdoumis A; Bach C; Buchholz N; Masood J; Junaid I Urol Int; 2012; 89(2):185-90. PubMed ID: 22777170 [TBL] [Abstract][Full Text] [Related]
6. Simulation for Percutaneous Renal Access: Where Are We? Noureldin YA; Andonian S J Endourol; 2017 Apr; 31(S1):S10-S19. PubMed ID: 27617641 [TBL] [Abstract][Full Text] [Related]
7. Face, content and construct validity of a novel robotic surgery simulator. Hung AJ; Zehnder P; Patil MB; Cai J; Ng CK; Aron M; Gill IS; Desai MM J Urol; 2011 Sep; 186(3):1019-24. PubMed ID: 21784469 [TBL] [Abstract][Full Text] [Related]
8. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. Ramos P; Montez J; Tripp A; Ng CK; Gill IS; Hung AJ BJU Int; 2014 May; 113(5):836-42. PubMed ID: 24224500 [TBL] [Abstract][Full Text] [Related]
9. Validation of a novel non-biological bench model for the training of percutaneous renal access. Zhang Y; Yu CF; Jin SH; Li NC; Na YQ Int Braz J Urol; 2014; 40(1):87-92. PubMed ID: 24642154 [TBL] [Abstract][Full Text] [Related]
10. Development and Validation of a Novel Robotic Procedure Specific Simulation Platform: Partial Nephrectomy. Hung AJ; Shah SH; Dalag L; Shin D; Gill IS J Urol; 2015 Aug; 194(2):520-6. PubMed ID: 25801765 [TBL] [Abstract][Full Text] [Related]
11. Validation of the RobotiX Mentor Robotic Surgery Simulator. Whittaker G; Aydin A; Raison N; Kum F; Challacombe B; Khan MS; Dasgupta P; Ahmed K J Endourol; 2016 Mar; 30(3):338-46. PubMed ID: 26576836 [TBL] [Abstract][Full Text] [Related]
12. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Kenney PA; Wszolek MF; Gould JJ; Libertino JA; Moinzadeh A Urology; 2009 Jun; 73(6):1288-92. PubMed ID: 19362352 [TBL] [Abstract][Full Text] [Related]
13. Face and construct validity of a computer-based virtual reality simulator for ERCP. Bittner JG; Mellinger JD; Imam T; Schade RR; Macfadyen BV Gastrointest Endosc; 2010 Feb; 71(2):357-64. PubMed ID: 19922914 [TBL] [Abstract][Full Text] [Related]
14. Expert and construct validity of the Simbionix GI Mentor II endoscopy simulator for colonoscopy. Koch AD; Buzink SN; Heemskerk J; Botden SM; Veenendaal R; Jakimowicz JJ; Schoon EJ Surg Endosc; 2008 Jan; 22(1):158-62. PubMed ID: 17516114 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817 [TBL] [Abstract][Full Text] [Related]
16. Assessment of basic endoscopic performance using a virtual reality simulator. Wilhelm DM; Ogan K; Roehrborn CG; Cadeddu JA; Pearle MS J Am Coll Surg; 2002 Nov; 195(5):675-81. PubMed ID: 12437255 [TBL] [Abstract][Full Text] [Related]
17. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Kang SG; Cho S; Kang SH; Haidar AM; Samavedi S; Palmer KJ; Patel VR; Cheon J Urology; 2014 Aug; 84(2):345-50. PubMed ID: 24975707 [TBL] [Abstract][Full Text] [Related]
18. Augmented reality simulator for ultrasound-guided percutaneous renal access. Mu Y; Hocking D; Wang ZT; Garvin GJ; Eagleson R; Peters TM Int J Comput Assist Radiol Surg; 2020 May; 15(5):749-757. PubMed ID: 32314227 [TBL] [Abstract][Full Text] [Related]
19. Face validity, construct validity and training benefits of a virtual reality TURP simulator. Bright E; Vine S; Wilson MR; Masters RS; McGrath JS Int J Surg; 2012; 10(3):163-6. PubMed ID: 22366646 [TBL] [Abstract][Full Text] [Related]
20. Holmium Laser Enucleation of the Prostate: Simulation-Based Training Curriculum and Validation. Kuronen-Stewart C; Ahmed K; Aydin A; Cynk M; Miller P; Challacombe B; Khan MS; Dasgupta P; Aho TF; Popert R Urology; 2015 Sep; 86(3):639-46. PubMed ID: 26126694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]