These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 20219475)
1. Optimum timing for integrated pest management: modelling rates of pesticide application and natural enemy releases. Tang S; Tang G; Cheke RA J Theor Biol; 2010 May; 264(2):623-38. PubMed ID: 20219475 [TBL] [Abstract][Full Text] [Related]
2. Multiple attractors of host-parasitoid models with integrated pest management strategies: eradication, persistence and outbreak. Tang S; Xiao Y; Cheke RA Theor Popul Biol; 2008 Mar; 73(2):181-97. PubMed ID: 18215410 [TBL] [Abstract][Full Text] [Related]
3. Integrated pest management models and their dynamical behaviour. Tang S; Xiao Y; Chen L; Cheke RA Bull Math Biol; 2005 Jan; 67(1):115-35. PubMed ID: 15691542 [TBL] [Abstract][Full Text] [Related]
4. Myths, models and mitigation of resistance to pesticides. Hoy MA Philos Trans R Soc Lond B Biol Sci; 1998 Oct; 353(1376):1787-95. PubMed ID: 10021775 [TBL] [Abstract][Full Text] [Related]
5. Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance. Liang J; Tang S; Cheke RA; Wu J Bull Math Biol; 2013 Nov; 75(11):2167-95. PubMed ID: 23943345 [TBL] [Abstract][Full Text] [Related]
6. Models for integrated pest control and their biological implications. Tang S; Cheke RA Math Biosci; 2008 Sep; 215(1):115-25. PubMed ID: 18638492 [TBL] [Abstract][Full Text] [Related]
7. Threshold conditions for integrated pest management models with pesticides that have residual effects. Tang S; Liang J; Tan Y; Cheke RA J Math Biol; 2013 Jan; 66(1-2):1-35. PubMed ID: 22205243 [TBL] [Abstract][Full Text] [Related]
9. A discrete host-parasitoid model with development of pesticide resistance and IPM strategies. Liang J; Tang S; Cheke RA J Biol Dyn; 2018 Dec; 12(1):1059-1078. PubMed ID: 31305220 [TBL] [Abstract][Full Text] [Related]
10. Effects of predator and prey dispersal on success or failure of biological control. Tang S; Cheke RA; Xiao Y Bull Math Biol; 2009 Nov; 71(8):2025-47. PubMed ID: 19562416 [TBL] [Abstract][Full Text] [Related]
11. On the impulsive controllability and bifurcation of a predator-pest model of IPM. Zhang H; Georgescu P; Chen L Biosystems; 2008 Sep; 93(3):151-71. PubMed ID: 18467020 [TBL] [Abstract][Full Text] [Related]
12. Optimal control of soybean aphid in the presence of natural enemies and the implied value of their ecosystem services. Zhang W; Swinton SM J Environ Manage; 2012 Apr; 96(1):7-16. PubMed ID: 22208393 [TBL] [Abstract][Full Text] [Related]
13. The response of natural enemies to selective insecticides applied to soybean. Varenhorst AJ; O'Neal ME Environ Entomol; 2012 Dec; 41(6):1565-74. PubMed ID: 23321105 [TBL] [Abstract][Full Text] [Related]
14. Pest management of a prey-predator model with sexual favoritism. Pei Y; Yang Y; Li C; Chen L Math Med Biol; 2009 Jun; 26(2):97-115. PubMed ID: 19015368 [TBL] [Abstract][Full Text] [Related]
15. Dynamic Economic Thresholds for Insecticide Applications Against Agricultural Pests: Importance of Pest and Natural Enemy Migration. Keasar T; Wajnberg E; Heimpel G; Hardy ICW; Harpaz LS; Gottlieb D; van Nouhuys S J Econ Entomol; 2023 Apr; 116(2):321-330. PubMed ID: 36791247 [TBL] [Abstract][Full Text] [Related]